Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 10, pp 1150–1156 | Cite as

NMR Analysis to Identify Biuret Groups in Common Polyureas

  • Wei-Guang Qiu
  • Fei-Long Zhang
  • Xu-Bao Jiang
  • Xiang-Zheng Kong
Article
  • 24 Downloads

Abstract

Polyureas (PU) are well known as a class of high impact engineering materials, and widely used also in emerging advanced applications. As a general observation, most of them are only soluble in a very limited number of highly protonic solvents, which makes their chemical structure analysis a great challenge. Besides the presence of abundant hydrogen bonding, the poor solubility of PU in common organic solvents is often ascribed to the formation of biuret crosslinking in their molecular chains. To clarify the presence of biuret groups in PU has been of great interest. To this end, two samples, based on hexamethylene diisocyanate (HDI) and toluene diisocyanate (TDI) respectively, were synthesized by precipitation polymerization of each of these diisocyanates in water-acetone at 30 °C. Their chemical structures were analyzed by high resolution magic angle spinning (HR-MAS) NMR, and through comparison of their NMR spectra with those of specially prepared biuret-containing polyurea oligomers, it was concluded that biuret group was absent in all the PU prepared at 30 °C. In addition, this NMR analysis was also applied to a PU obtained by copolymerization of TDI with ethylene diamine (EDA) and water at 65 °C in EDA aqueous solution. It was confirmed that biuret unit was also absent in this PU and that EDA was more active than water towards TDI. The presence of EDA was crucial to the formation of uniform PU microspheres. This study provides therefore a reliable method for the analysis of PU chemical structure.

Keywords

Diisocyanate Polyurea Chemical structure Biuret NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21274054, 21304038 and 51473066), Research Foundation of University of Jinan (No. XKY1604) and by Science & Technology Development Plan of Shandong Province (No. 2017GGX202009), China.

References

  1. 1.
    Davidson, J. S.; Fisher, J. W.; Hammons, M. I.; Porter, J. R.; Dinan, R. J. Failure mechanisms of polymer-reinforced concrete masonry walls subjected to blast. J. Struct. Eng. 2005, 131(8), 1194–1205.CrossRefGoogle Scholar
  2. 2.
    Mohotti, D.; Ngo, T.; Mendis, P.; Raman, S. N. Polyurea coated composite aluminium plates subjected to high velocity projectile impact. Mater. Design 2013, 52(24), 1–16.CrossRefGoogle Scholar
  3. 3.
    Samiee, A.; Amirkhizi, A. V.; Nemat-Naser, S. Numerical study of the effect of polyurea on the performance of steel plates under blast loads. Mech. Mater. 2013, 64(9), 1–10.CrossRefGoogle Scholar
  4. 4.
    Ley, S. V.; Mitchell, C.; Pears, D.; Ramarao, C.; Yu, J. Q.; Zhou, W. Recyclable polyurea microencapsulated Pd nanoparticles: An efficient catalyst for hydrogenolysis of epoxides. Org. Lett. 2003, 5(24), 4665–4668.CrossRefGoogle Scholar
  5. 5.
    Han, H.; Zhou, Y.; Li, S.; Wang, Y.; Kong, X. Z. Immobilization of lipase from pseudomon as fluorescens on porous polyurea and its application in kinetic resolution of racemic 1-phenylethanol. ACS Appl. Mater. Interfaces 2016, 8(39), 25714–25724.CrossRefGoogle Scholar
  6. 6.
    Jiang, X.; Yu, Y.; Li, X.; Kong, X. Z. High yield preparation of uniform polyurea microspheres through precipitation polymerization and their application as laccase immobilization support. Chem. Eng. J. 2017, 328, 1043–1050.CrossRefGoogle Scholar
  7. 7.
    Jacquemond, M.; Jeckelmann, N.; Ouali, L.; Haefliger, O. P. Perfume-containing polyurea microcapsules with undetectable levels of free isocyanates. J. Appl. Polym. Sci. 2009, 114(5), 3074–3080.CrossRefGoogle Scholar
  8. 8.
    Li, J.; Hughes, A. D.; Kalantar, T. H.; Drake, I. J.; Tucker, C. J.; Moore, J. S. Pickering-emulsion-templated encapsulation of a hydrophilic amine and its enhanced stability using poly(allyl amine). ACS Macro Lett. 2014, 3(10), 976–980.CrossRefGoogle Scholar
  9. 9.
    Chen, L.; Xu, L.; Shang, H.; Zhang. Z. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energ. Convers. Manage. 2009, 50(3), 723–729.CrossRefGoogle Scholar
  10. 10.
    Ying, H.; Zhang, Y.; Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 2014, 5, 3218.CrossRefGoogle Scholar
  11. 11.
    Howarth, G. Polyurethanes, polyurethane dispersions and polyureas: Past, present and future. Surf. Coat. Int. Part B Coat. Trans. 2003, 86(2), 111–118.CrossRefGoogle Scholar
  12. 12.
    Jiang, X.; Li, X.; Zhu, X.; Kong, X. Z. Preparation of highly uniform polyurea microspheres through precipitation polymerization and their characterization. Ind. Eng. Chem. Res. 2016, 55(44), 11528–11535.CrossRefGoogle Scholar
  13. 13.
    Jiang, X.; Kong, X. Z.; Zhu, X. A Novel protocol for the preparation of uniform polymer microspheres with high yields through step polymerization of isophorone diisocyanate. J. Polym. Sci., Part A: Polym. Chem. 2011, 49(20), 4492–4497.CrossRefGoogle Scholar
  14. 14.
    Sumi, M.; Chokki, Y.; Nakai, Y.; Nakabayashi, M.; Kanzawa, T. Studies on the structure of polyurethane elastomers. I. NMR spectra of the model compounds and some linear polyurethanes. Die Makromol. Chem. 1964, 78(1), 146–156.Google Scholar
  15. 15.
    Chattopadhyay, D. K.; Raju, K. V. S. N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007, 32(3), 352–418.CrossRefGoogle Scholar
  16. 16.
    Suzuoki, K.; Kagawa, K.; Fukuma, K.; Uda, B.; Ohmura, J. The analysis of synthetic and side reactions of polyurethaneurea. Nippon Gomu Kyokaishi 1999, 72, 139–143.CrossRefGoogle Scholar
  17. 17.
    Mathisen, R. J.; Yoo, J. K.; Sung, C. S. P. Dye labeling technique for monitoring the cure of polyimides and polyureas: Model compound studies. Macromolecules 1987, 20(6), 1414–1416.CrossRefGoogle Scholar
  18. 18.
    Okuto, H. Studies on the structure of polyurethane elastomers. II. High resolution NMR spectroscopic determination of allophanate and biuret linkages in the cured polyurethane elastomer: Degradation by amine. Die Makromol. Chem. 1966, 98(1), 148–163.Google Scholar
  19. 19.
    Delebecq, E.; Pascault, J.; Boutevin, B.; Ganachaud, F. On the Versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113(1), 80–118.CrossRefGoogle Scholar
  20. 20.
    Zhang, X.; Zhang, X. Y.; He, Y.; Chen, H. Progress in synthesis and characterization of HDI biuret. Pain Coat. Ind. 2011, 41(10), 71–75.Google Scholar
  21. 21.
    Lapprand, A.; Boisson, F.; Delolme, F.; Méchin, F.; Pascault, J. P. Reactivity of isocyanates with urethanes: conditions for allophanate formation. Polym. Degrad. Stab. 2005, 90(2), 363–373.CrossRefGoogle Scholar
  22. 22.
    Jiang, X.; Zhu, X.; Arnold, A. A.; Kong, X. Z.; Claverie, J. P. Polyurea structure characterization by HR-MAS NMR spectroscopy. Ind. Eng. Chem. Res. 2017, 56(11), 2993–2998.CrossRefGoogle Scholar
  23. 23.
    Han, H.; Li, S.; Zhu, X.; Jiang, X.; Kong, X. Z. One step preparation of porous polyurea by reaction of toluene diisocyanate with water and its characterization. RSC Adv. 2014, 4(63), 33520–33529.CrossRefGoogle Scholar
  24. 24.
    Jiang, X.; Zhu, X.; Kong, X. Z. A facile route to preparation of uniform polymer microspheres by quiescent polymerization with reactor standing still without any stirring. Chem. Eng. J. 2012, 213(12), 214–217.CrossRefGoogle Scholar
  25. 25.
    Kong, X. Z.; Jiang, W.; Jiang, X.; Zhu, X. Preparation of coreshell and hollow polyurea microspheres via precipitation polymerization using polyamine as crosslinker monomer. Polym. Chem. 2013, 4(24), 5776–5784.CrossRefGoogle Scholar
  26. 26.
    Li, S. S.; Han, H.; Zhu, X.; Jiang, X.; Kong, X. Z. Preparation and formation mechanism of porous polyurea by reaction of toluene diisocyanate with water and its Application as adsorbent for anionic dye removal. Chinese J. Polym. Sci. 2015, 33(8), 1196–1210.CrossRefGoogle Scholar
  27. 27.
    Li, S.; Zhu, X.; Kong, X. Z.; Jiang, X. One step synthesis of porous polyurea by using TDI and EDA and its characterization. Acta Polymerica Sinica (in Chinese) 2016, (3), 391–398.Google Scholar
  28. 28.
    Yang, Y.; Jiang, X.; Zhu, X.; Kong, X. Z. A facile pathway to polyurea nanofiber fabrication and polymer morphology control in copolymerization of oxydianiline and toluene diisocyanate in acetone. RSC Adv. 2015, 5(10), 7426–7432.CrossRefGoogle Scholar
  29. 29.
    Alam, T. M.; Jenkins, J. E. “Advanced Aspects of Spectroscopy”, Intech, Croatia, 2012, p. 279–301.Google Scholar
  30. 30.
    Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W. Aliphatic thermoplastic polyurethane-ureas and polyureas synthesized through a non-isocyanate route. RSC Adv. 2015, 5(9), 6843–6852.CrossRefGoogle Scholar
  31. 31.
    Harris, R. F.; Kinney, J. E.; Savina, M. R.; Jeor, V. L. S.; Bicerano, J.; Durvasula, V. R.; Moreno, L. N. Synthesis and characterization of urea-based polyureas: 1. Urea-terminated poly(1,6-hexamethyleneurea) polyol dispersions. Polymer 1995, 36(22), 4275–4285.Google Scholar
  32. 32.
    Edwards, P. A.; Striemer, G.; Webster, D. C. Synthesis, characterization and self-crosslinking of glycidyl carbamate functional resins. Prog. Org. Coat. 2006, 57(2), 128–139.CrossRefGoogle Scholar
  33. 33.
    Wendisch, D.; Reiff, H.; Dieterich, D. Kernresonanzspektroskopische beiträge zur struktur und stereochemie von (cyclo)aliphatischen isocyanaten und deren folgeprodukten. Angew. Makromol. Chem. 1986, 141(1), 173–183.CrossRefGoogle Scholar
  34. 34.
    Zhang, F.; Jiang, X.; Zhu, X.; Chen, Z.; Kong, X. Z. Preparation of uniform and porous polyurea microspheres of large size through interfacial polymerization of toluene diisocyanate in water solution of ethylene diamine. Chem. Eng. J. 2016, 303, 48–55.CrossRefGoogle Scholar
  35. 35.
    Entelis, S. G.; Nesterov, O. V. Kinetics and mechanism of the reactions of isocyanates with compounds containing “active” hydrogen. Russ. Chem. Rev. 1966, 35(12), 917–930.CrossRefGoogle Scholar
  36. 36.
    Lu, X.; Wang, Y.; Wu, X. Molecular interactions in polyurea by 1-D and 2-D NMR. Polymer 1993, 34(1), 56–60.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringUniversity of JinanJinanChina

Personalised recommendations