Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 10, pp 1129–1138 | Cite as

Slight Structural Disorder in Bithiophene-based Random Terpolymers with Improved Power Conversion Efficiency for Polymer Solar Cells

  • Meng-Han Wang
  • Zhong-Yuan Xue
  • Zhi-Wei Wang
  • Wei-Hua Ning
  • Yu Zhong
  • Ya-Nan Liu
  • Chun-Feng Zhang
  • Sven Huettner
  • You-Tian Tao
Article
  • 27 Downloads

Abstract

A series of random terpolymers P2−P5 were designed and synthesized by randomly embedding 5 mol%, 10 mol%, 15 mol% and 25 mol% feed ratios of low cost 2,2-bithiophene as the third monomer to the famous donor-acceptor (D-A) type copolymer PTB7-Th (P1). All polymers showed similar molecular weight with number-average molecular weight (Mn) and weight-average molecular weight (Mw) in the range of (59−74) and (93−114) kg·mol−1, respectively, to ensure a fair comparison on the structure-property relationships. Compared with the control copolymer PTB7-Th, the random terpolymers exhibited enhanced absorption intensity in a wide range from 400 nm to 650 nm in both solution and film as well as in polymer/PC71BM blends. From grazing incident wide-angle X-ray diffraction (GIWAXS), compared with the regularly alternated copolymer PTB7-Th, the random terpolymers demonstrated mild structural disorder with reduced (100) lamellar stacking and slightly weakened (010) π-π stacking for the polymers as well as slightly reduced PC71BM aggregation in polymer/PC71BM blends. However, the measured hole mobility for terpolymers ((1.20−3.73) × 10−4 cm2·V−1·s−1) was evaluated to be comparable or even higher than 1.35 × 10−4 cm2·V−1·s−1 of the alternative copolymer. Enhanced average power conversion efficiency (PCE) from 7.35% to 8.11% and 7.79% to 8.37% was observed in both conventional and inverted device architectures from copolymer P1 to terpolymers P4, while further increasing the 2,2-bithiophene feed ratio decreased the PCE.

Keywords

Bithiophene-based random terpolymers Structural disorder Polymer solar cells Photovoltaic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the the National Natural Science Foundation of China (No. 61761136013) and the Natural Science Foundation of Jiangsu Province (Nos. BK20160042 and BK20160990). S.H. is thankful to DFG (392306670) and Y.Z. is thankful to the CSC for financial support. Parts of this research were undertaken at the SAXS/WAXS beamline of the Australian Synchrotron.

Supplementary material

10118_2018_2128_MOESM1_ESM.pdf (663 kb)
Slight Structural Disorder in Bithiophene-based Random Terpolymers with Improved Power Conversion Efficiency for Polymer Solar Cells

References

  1. 1.
    Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109(11), 5868–5923.CrossRefGoogle Scholar
  2. 2.
    Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem. Soc. Rev. 2011, 40(3), 1185–1199.CrossRefGoogle Scholar
  3. 3.
    Wang, S.; Huang W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci. 2017, 35(2), 207–218.CrossRefGoogle Scholar
  4. 4.
    Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. nType water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138(6), 2004–2013.CrossRefGoogle Scholar
  5. 5.
    Zheng, Z.; Zhang, S.; Zhang, J.; Qin, Y.; Li, W.; Yu, R.; Wei, Z.; Hou, J. Over 11% efficiency in tandem polymer solar cells featured by a low-band-gap polymer with fine-tuned properties. Adv. Mater. 2016, 28(25), 5133–5138.CrossRefGoogle Scholar
  6. 6.
    Cui, Y.; Yao, H.; Yang, C.; Zhang, S.; Hou, J. Organic solar cells with an efficiency approaching 15%. Acta Polymerica Sinica (in Chinese) 2018, (2), 223–230.Google Scholar
  7. 7.
    Duan, Y.; Xu, X.; Yan, H.; Wu, W.; Li, Z.; Peng, Q. Pronounced effects of a triazine core on photovoltaic performance-efficient organic solar cells enabled by a PDI trimer-based small molecular acceptor. Adv. Mater. 2017, 29(7), 1605115.CrossRefGoogle Scholar
  8. 8.
    Hendriks, K. H.; Heintges, G. H.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. Int. Ed. 2013, 52(32), 8341–8344.CrossRefGoogle Scholar
  9. 9.
    Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115(23), 12666–12731.CrossRefGoogle Scholar
  10. 10.
    Lee, J. W.; Ahn, H.; Jo, W. H. Conjugated random copolymers consisting of pyridine-and thiophene-capped diketopyrrolopyrrole as co-electron accepting units to enhance both JSC and VOC of polymer solar cells. Macromolecules 2015, 48(21), 7836–7842.CrossRefGoogle Scholar
  11. 11.
    Subbiah, J.; Purushothaman, B.; Chen, M.; Qin, T.; Gao, M.; Vak, D.; Scholes, F. H.; Chen, X.; Watkins, S. E.; Wilson, G. J.; Holmes, A. B.; Wong, W. W.; Jones, D. J. Organic solar cells using a high-molecular-weight benzodithiophenebenzothiadiazole copolymer with an efficiency of 9.4%. Adv. Mater. 2015, 27(4), 702–705.CrossRefGoogle Scholar
  12. 12.
    Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293.CrossRefGoogle Scholar
  13. 13.
    Liu, P.; Zhang, K.; Liu, F.; Jin, Y.; Liu, S.; Russell, T. P; Yip, H. L.; Huang, F.; Cao, Y. Effect of fluorine content in thienothiophene-benzodithiophene copolymers on the morphology and performance of polymer solar cells. Chem. Mater. 2014, 26(9), 3009–3017.CrossRefGoogle Scholar
  14. 14.
    Ye, L.; Jiao, X.; Zhang, S.; Yao, H.; Qin, Y.; Ade, H.; Hou, J. Control of mesoscale morphology and photovoltaic performance in diketopyrrolopyrrole-based small band gap terpolymers. Adv. Energy Mater. 2017, 7(3), 1601138.CrossRefGoogle Scholar
  15. 15.
    Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J. Am. Chem. Soc. 2015, 137(44), 14149–14157.CrossRefGoogle Scholar
  16. 16.
    Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A. J.; Sun, Y. Single-junction organic solar cells based on a novel widebandgap polymer with efficiency of 9.7%. Adv. Mater. 2015, 27(18), 2938–2944.CrossRefGoogle Scholar
  17. 17.
    Wang, M.; Cai, D.; Xin, J.; Ma, W.; Tu, Q.; Zheng, Q. A ternary conjugated D-A copolymer yields over 9.0% efficiency in organic solar cells. J. Mater. Chem. A 2017, 5(24), 12015–12021.CrossRefGoogle Scholar
  18. 18.
    Ko, S. J.; Hoang, Q. V.; Song, C. E.; Uddin, M. A.; Lim, E.; Park, S. Y.; Lee, B. H.; Song, S.; Moon, S. J.; Hwang, S.; Morin, P.-O.; Leclerc, M.; Su, G. M.; Chabinyc, M. L.; Woo, H. Y.; Shin, W. S.; Kim, J. Y. High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy Environ. Sci. 2017, 10(6), 1443–1455.CrossRefGoogle Scholar
  19. 19.
    Fan, B.; Xue, X.; Meng, X.; Sun, X.; Huo, L.; Ma, W.; Sun, Y. High-performance conjugated terpolymer-based organic bulk heterojunction solar cells. J. Mater. Chem. A 2016, 4(36), 13930–13937.CrossRefGoogle Scholar
  20. 20.
    Wan, Z.; Yang, J.; Liu, Y.; Wang, S.; Zhong, Y.; Li, C.; Zhang, Z.; Xing, G.; Huettner, S.; Tao, Y.; Li, Y.; Huang, W. Cyclometalated Pt complex-based random terpolymers for efficient polymer solar cells. Polym. Chem. 2017, 8(32), 4729–4737.CrossRefGoogle Scholar
  21. 21.
    Park, G. E.; Kim, H. J.; Lee, D. H.; Cho, M. J.; Choi, D. H. Regular terpolymers with fluorinated bithiophene units for high-performing photovoltaic cells. Polym. Chem. 2016, 7(31), 5069–5978.CrossRefGoogle Scholar
  22. 22.
    Jiang, T.; Yang, J.; Tao, Y.; Fan, C.; Xue, L.; Zhang, Z.; Li, H.; Li, Y.; Huang, W. Random terpolymer with a cost-effective monomer and comparable efficiency to PTB7-Th for bulkheterojunction polymer solar cells. Polym. Chem. 2016, 7(4), 926–932.CrossRefGoogle Scholar
  23. 23.
    Qian, M.; Zhang, R.; Hao, J.; Zhang, W.; Zhang, Q.; Wang, J.; Tao, Y.; Chen, S.; Fang, J.; Huang, W. Dramatic enhancement of power conversion efficiency in polymer solar cells by conjugating very low ratio of triplet iridium complexes to PTB7. Adv. Mater. 2015, 27(23), 3546–3552.CrossRefGoogle Scholar
  24. 24.
    Keshtov, M. L.; Khokhlov, A. R.; Kuklin, S. A.; Chen, F. C.; Nikolaev, A. Y.; Koukaras, E. N.; Sharma, G. D. Synthesis of alternating D-A1-D-A2 terpolymers comprising two electrondeficient moieties, quinoxaline and benzothiadiazole units for photovoltaic applications. Polym. Chem. 2016, 7(24), 4025–4035.CrossRefGoogle Scholar
  25. 25.
    Duan, C.; Gao, K.; van Franeker J. J.; Liu, F.; Wienk, M. M.; Janssen, R. A. Toward practical useful polymers for highly efficient solar cells via a random copolymer approach. J. Am. Chem. Soc. 2016, 138(34), 10782–10785.CrossRefGoogle Scholar
  26. 26.
    Wang, W. Development of spiro [cyclopenta [1,2-b:5,4-b′] dithiophene-4,9′-fluorene]-based A-π-D-π-A small molecules with different acceptor units for efficient organic solar cells. ACS Appl. Mater. Interfaces 2017, 9(5), 4614–4625.CrossRefGoogle Scholar
  27. 27.
    Xu, X.; Zhang, G.; Zhao, Y.; Liu, J.; Li, Y.; Peng, Q. Highly efficient random terpolymers for photovoltaic applications with enhanced absorption and molecular aggregation. Chinese J. Polym. Sci. 2017, 35(2), 249–260.CrossRefGoogle Scholar
  28. 28.
    Tan, Z.; Li, S.; Wang, F.; Qian, D.; Lin, J.; Hou, J.; Li, Y. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Sci. Rep. 2014, 4, 4691.CrossRefGoogle Scholar
  29. 29.
    Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 2011, 23(14), 1679–1683.CrossRefGoogle Scholar
  30. 30.
    Xue, Z.; Wang, S.; Yang, J.; Zhong, Y.; Qian, M.; Li, C.; Zhang, Z.; Xing, G.; Huettner, S.; Tao, Y.; Li, Y.; Huang, W. Enhanced power conversion efficiency in iridium complex based terpolymers for polymer solar cells. npj Flex. Electron. 2018, 2, 1.CrossRefGoogle Scholar
  31. 31.
    Wan, Q.; Guo, X.; Wang, Z.; Li, W.; Guo, B.; Ma, W.; Zhang, M.; Li, Y. 10.8% Efficiency polymer solar cells based on PTB7-Th and PC71BM via binary solvent additives treatment. Adv. Funct. Mater. 2016, 26(36), 6635–6640.CrossRefGoogle Scholar
  32. 32.
    Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. Conjugated polymer-small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 2015, 137(25), 8176–8183.CrossRefGoogle Scholar
  33. 33.
    Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22(20), E135–E138.CrossRefGoogle Scholar
  34. 34.
    Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138(13), 4657–4664.CrossRefGoogle Scholar
  35. 35.
    Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45(5), 723–733.CrossRefGoogle Scholar
  36. 36.
    Prasad, S. K. K.; Gallaher, J. K.; Barker, A. J.; Woo, H. Y.; Abbas, M.; Hirsch, L.; Hodgkiss, J. M. Prof. SPIE 9926, 99231, 99231F-1.Google Scholar
  37. 37.
    Zusan, A.; Gieseking, B.; Zerson, M.; Dyakonov, V.; Magerle, R.; Deibel, C. The effect of diiodooctane on the charge carrier generation in organic solar cells based on the copolymer PBDTTT-C. Sci. Rep. 2015, 5, 8286.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Meng-Han Wang
    • 1
  • Zhong-Yuan Xue
    • 1
  • Zhi-Wei Wang
    • 2
  • Wei-Hua Ning
    • 1
  • Yu Zhong
    • 3
  • Ya-Nan Liu
    • 1
  • Chun-Feng Zhang
    • 2
  • Sven Huettner
    • 3
  • You-Tian Tao
    • 1
  1. 1.Key Lab for Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingChina
  2. 2.National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina
  3. 3.Macromolecular Chemistry IUniversität BayreuthBayreuthGermany

Personalised recommendations