Chinese Journal of Polymer Science

, Volume 36, Issue 10, pp 1195–1199 | Cite as

Initiation, Development and Stabilization of Cavities during Tensile Deformation of Semicrystalline Polymers

  • Ying Lu
  • Yong-Feng Men


By using polybutene-1 as a typical example, we illustrate the initiation, development and stabilization of cavities in the sample during tensile deformation. Samples with the same crystallinity, long spacing and crystalline lamellar thickness but very different sizes of spherulites were prepared via changing the melt history. Dimension of cavities during stretching the samples was determined by in situ ultra small angle X-ray scattering techniques. It turned out that the size of the cavities was bigger in the sample with larger spherulites than the one with smaller spherulites. The results show clear evidence of initiating cavities within crystalline phase at the grain-boundary of crystalline blocks, growing of cavities passing through parallel stacked lamellar crystals and amorphous layers and finally stablized by tilted lamellae at both ends of the plate-like cavities within the spherulites.


Cavitation Deformation Polymer Polubutene-1 Spherulite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51525305 and 21134006), and the Newton Advanced Fellowship of Royal Society (No. NA150222). We thank Dr. Bijin Xiong for his assistance during USAXS experiments.


  1. 1.
    Strobl, G., “The physics of polymers”, 2nd ed., Springer, Berlin, Germany, 1997CrossRefGoogle Scholar
  2. 2.
    Lin, L.; Argon, A. S. Structure and plastic-deformation of polyethylene. J. Mater. Sci. 1994, 29(2), 294–323.CrossRefGoogle Scholar
  3. 3.
    Chen, W.; Li, X. Y.; Liu, Y. P.; Li, J.; Zhou, W. M.; Chen, L.; Li, L. B. The spatial correlation between crystalline and amorphous orientations of isotactic polypropylene during plastic deformation: An in situ observation with FTIR imaging. Chinese J. Polym. Sci. 2015, 33(4), 613–620.CrossRefGoogle Scholar
  4. 4.
    Qiu, J.; Wang, Z. G.; Yang, L.; Zhao, J. C.; Niu, Y. H.; Hsiao, B. S. Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer 2007, 48(23), 6934–6947.CrossRefGoogle Scholar
  5. 5.
    Chen, X. W.; Lv, F.; Su, F. M.; Ji, Y. X.; Meng, L. P.; Wan, C. X.; Lin, Y. F.; Li, X. Y.; Li, L. B. Deformation mechanism of ipp under uniaxial stretching over a wide temperature range: An in-situ synchrotron radiation saxs/waxs study. Polymer 2017, 118, 12–21.CrossRefGoogle Scholar
  6. 6.
    Young, R. J.; Bowden, P. B.; Ritchie, J. M.; Rider, J. G. Deformation mechanisms in oriented high-density polyethylene. J. Mater. Sci. 1973, 8(1), 23–36.CrossRefGoogle Scholar
  7. 7.
    Bowden, P. B.; Young, R. J. Deformation mechanisms in crystalline polymers. J. Mater. Sci. 1974, 9(12), 2034–2051.CrossRefGoogle Scholar
  8. 8.
    Song, H. H.; Argon, A. S.; Cohen, R. E. Morphology of highly textured high-density polyethylene. Macromolecules 1990, 23(3), 870–876.CrossRefGoogle Scholar
  9. 9.
    Seiberle, H.; Stille, W.; Strobl, G. Comparative-study of individual and collective rotational motion in mixtures of liquid-crystalline side group polymers and low-molecular-weight mesogens. Macromolecules 1990, 23(7), 2008–2016.CrossRefGoogle Scholar
  10. 10.
    Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature 1978, 272(5650), 226–229.CrossRefGoogle Scholar
  11. 11.
    Popli, R.; Mandelkern, L. Influence of structural and morphological factors on the mechanical-properties of the polyethylenes. J. Polym. Sci., Part B: Polym. Phys. 1987, 25(3), 441–483.CrossRefGoogle Scholar
  12. 12.
    Wang, Y. T.; Jiang, Z. Y.; Wu, Z. H.; Men, Y. F. Tensile deformation of polybutene-1 with stable form I at elevated temperature. Macromolecules 2013, 46(2), 518–522.CrossRefGoogle Scholar
  13. 13.
    Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32(13), 4390–4403.CrossRefGoogle Scholar
  14. 14.
    Hobeika, S.; Men, Y.; Strobl, G. Temperature and strain rate independence of critical strains in polyethylene and poly(ethylene-co-vinyl acetate). Macromolecules 2000, 33(5), 1827–1833.CrossRefGoogle Scholar
  15. 15.
    Hong, K.; Strobl, G. Network stretching during tensile drawing of polyethylene: a study using X-ray scattering and microscopy. Macromolecules 2006, 39(1), 268–273.CrossRefGoogle Scholar
  16. 16.
    Men, Y.; Rieger, J.; Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett. 2003, 91(9), 095502.CrossRefGoogle Scholar
  17. 17.
    Galeski, A.; Rozanski, A. Flory prize lecture: cavitation during drawing of crystalline polymers. Macromol. Symp. 2010, 298(1), 1–9.CrossRefGoogle Scholar
  18. 18.
    Humbert, S.; Lame, O.; Chenal, J. M.; Rochas, C.; Vigier, G. New insight on initiation of cavitation in semicrystalline polymers: in-situ SAXS measurements. Macromolecules 2010, 43(17), 7212–7221.CrossRefGoogle Scholar
  19. 19.
    Xiong, B.; Lame, O.; Chenal, J. M.; Rochas, C.; Seguela, R.; Vigier, G. In-situ SAXS study and modeling of the cavitation/crystal-shear competition in semi-crystalline polymers: influence of temperature and microstructure in polyethylene. Polymer 2013, 54(20), 5408–5418.CrossRefGoogle Scholar
  20. 20.
    Men, Y. F.; Rieger, J.; Homeyer, J. Synchrotron ultrasmall-angle X-ray scattering studies on tensile deformation of poly(1-butene). Macromolecules 2004, 37(25), 9481–9488.CrossRefGoogle Scholar
  21. 21.
    Wang, Y. T.; Jiang, Z. Y.; Fu, L. L.; Lu, Y.; Men, Y. F. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers. Plos One 2014, 9(5), e97234.CrossRefGoogle Scholar
  22. 22.
    Lu, Y.; Wang, Y. T.; Chen, R.; Zhao, J. Y.; Jiang, Z. Y.; Men, Y. F. Cavitation in lsotactic polypropylene at large strains during tensile deformation at elevated temperatures. Macromolecules 2015, 48(16), 5799–5806.CrossRefGoogle Scholar
  23. 23.
    Taraiya, A. K.; Richardson, A.; Ward, I. M. Production and properties of highly oriented polypropylene by die drawing. J. Appl. Polym. Sci. 1987, 33(7), 2559–2579.CrossRefGoogle Scholar
  24. 24.
    Tashiro, K.; Hu, J.; Wang, H.; Hanesaka, M.; Saiani, A. Refinement of the crystal structures of forms I and II of isotactic polybutene-1 and a proposal of phase transition mechanism between them. Macromolecules 2016, 49(4), 1392–1404.CrossRefGoogle Scholar
  25. 25.
    Maruyama, M.; Sakamoto, Y.; Nozaki, K.; Yamamoto, T.; Kajioka, H.; Toda, A.; Yamada, K. Kinetic study of the ii-i phase transition of isotactic polybutene-1. Polymer 2010, 51(23), 5532–5538.CrossRefGoogle Scholar
  26. 26.
    Gohil, R. M.; Milles, M. J.; Petermann, J. On the molecular mechanism of the crystal transformation (tetragonal-hexagonal) in polybutene-1. J. Macromol. Sci. Phys. 1982, B21(2), 189–201.CrossRefGoogle Scholar
  27. 27.
    Rubin, I. D. Relative stabilities of polymorphs of polybutene-1 obtained from melt. J. Polym. Sci., Part B: Polym. Phys. Lett. 1964, 2(7pb), 747–749.CrossRefGoogle Scholar
  28. 28.
    Porod, G., in “Small-angle X-ray scattering”, ed. by Glatter, O. and Kratky, O., Academic Press, New York, 1982, p. 35Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations