A Soft Shape Memory Reversible Dry Adhesive

Article
  • 6 Downloads

Abstract

Transfer printing is a critical procedure for manufacturing stretchable electronics. During such a procedure, stamps are utilized to transfer micro devices from silicon wafers to stretchable polymeric substrates. In addition to conventional silicone rubber stamps, epoxy resin based shape memory stamps have been developed and the transfer yield is thus significantly promoted. However, elastic modulus of the epoxy stamps is too high at both glassy and rubbery states, which may break the brittle micro devices during the adhesion process under mechanical pressure. In this work, we synthesized a copolymer of butyl acrylate (BA) and polycaprolactone diacrylate (PCLDA) as a soft reversible dry adhesive enabling a shape memory capability based on crystalline transition of polycaprolactone (PCL) segments. For the sample containing 40 wt% BA and 60 wt% PCLDA, Young’s modulus was 8.3 and 0.9 MPa respectively below and above the thermal transition temperature, which was much lower than that of the epoxy adhesive. On the other hand, the soft material still provided nearly ideal shape memory fixity and recovery ratios. Subsequently, shape memory surface with cone-shaped microstructure was prepared, which enabled a heating induced strong-to-weak adhesion transition when the microstructure recovered from a pressed temporary morphology to the permanent cone-shaped morphology. Such a soft reversible dry adhesive may contribute to large-scale and automated transfer printing processing.

Keywords

Stretchable electronics Shape memory polymers Reversible adhesives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21504077 and 51673169), Natural Science Foundation of Zhejiang Province for Distinguished Young Scholar (No. LR18E030001), and National Key Basic Research Program of China (No. 2015CB351903).

Supplementary material

10118_2018_2119_MOESM1_ESM.pdf (507 kb)
A Soft Shape Memory Reversible Dry Adhesive
10118_2018_2119_MOESM2_ESM.mp4 (6.7 mb)
Supplementary material, approximately 6.73 MB.

References

  1. 1.
    Tsutsui, T.; Fujita, K. The shift from “hard” to “soft” electronics. Adv. Mater. 2002, 14(13-14), 949–952.CrossRefGoogle Scholar
  2. 2.
    Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S.; Someya, T. An ultralightweight design for imperceptible plastic electronics. Nature 2013, 499(7459), 458–463.CrossRefGoogle Scholar
  3. 3.
    Kim, D. H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 2010, 22(19), 2108–2124.CrossRefGoogle Scholar
  4. 4.
    Kim, D. H.; Rogers, J. A. Stretchable electronics: materials strategies and devices. Adv. Mater. 2008, 20(24), 4887–4892.CrossRefGoogle Scholar
  5. 5.
    Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327(5973), 1603–1607.CrossRefGoogle Scholar
  6. 6.
    Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24(39), 5284–5318.CrossRefGoogle Scholar
  7. 7.
    Yang, H.; Zhao, D.; Chuwongin, S.; Seo, J. H.; Yang, W.; Shuai, Y.; Berggren, J.; Hammar, M.; Ma, Z.; Zhou, W. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 2012, 6(9), 615–620.CrossRefGoogle Scholar
  8. 8.
    Meitl, M. A.; Zhu, Z.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y.; Adesida, I.; Nuzzo, G. R.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5(1), 33–38.CrossRefGoogle Scholar
  9. 9.
    Xie, T.; Xiao, X. Self-peeling reversible dry adhesive system. Chem. Mater. 2008, 20(9), 2866–2868.CrossRefGoogle Scholar
  10. 10.
    Wang, R.; Xiao, X.; Xie, T. Viscoelastic behavior and force nature of thermo-reversible epoxy dry adhesives. Macromol. Rapid Commun. 2010, 31(3), 295–299.CrossRefGoogle Scholar
  11. 11.
    Xu, H.; Yu, C.; Wang, S.; Malyarchuk, V.; Xie, T.; Rogers, J. A. Deformable, programmable, and shapememorizing micro optics. Adv. Funct. Mater. 2013, 23(26), 3299–3306.CrossRefGoogle Scholar
  12. 12.
    Huang, Y.; Zheng, N.; Cheng, Z.; Chen, Y.; Lu, B.; Xie, T.; Feng, X. Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive. ACS Appl. Mater. Interfaces 2016, 8(51), 35628–35633.CrossRefGoogle Scholar
  13. 13.
    Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79–120.CrossRefGoogle Scholar
  14. 14.
    Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 2011, 56(7), 1077–1135.CrossRefGoogle Scholar
  15. 15.
    Gu, S. Y.; Gao, X. F.; Jin, S. P.; Liu, Y. L. Biodegradable shape memory polyurethanes with controllable trigger temperature. Chinese J. Polym. Sci. 2016, 34(6), 720–729.CrossRefGoogle Scholar
  16. 16.
    Liao, J. X.; Huang, J. H.; Wang, T., Sun; W. X.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297–1306.CrossRefGoogle Scholar
  17. 17.
    Eisenhaure, J. D.; Xie, T.; Varghese, S.; Kim, S. Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl. Mater. Interfaces 2013, 5(16), 7714–7717.CrossRefGoogle Scholar
  18. 18.
    Xie, T.; Rousseau, I. A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 2009, 50, 1852–1856.CrossRefGoogle Scholar
  19. 19.
    Zheng, N.; Fang, G.; Cao, Z.; Zhao, Q.; Xie, T. High strain epoxy shape memory polymer. Polym. Chem. 2015, 6, 3046–3053.CrossRefGoogle Scholar
  20. 20.
    Zhao, R.; Zhao, T.; Jiang, X.; Liu, X.; Shi, D.; Liu, C.; Yang, S.; Chen, E. Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater. 2017, 29(12), 1605908.CrossRefGoogle Scholar
  21. 21.
    Zhang, G.; Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Unusual aspects of supramolecular networks: plasticity to elasticity, ultrasoft shape memory, and dynamic mechanical properties. Adv. Funct. Mater. 2016, 26(6), 931–937.CrossRefGoogle Scholar
  22. 22.
    Lendlein, A.; Schmidt, A. M.; Langer, R. AB-polymer networks based on oligo (ε-caprolactone) segments showing shape-memory properties. Proc. Natl. Acad. Sci. 2001, 98(3), 842–847.Google Scholar
  23. 23.
    Saatchi, M.; Behl, M.; Nöchel, U.; Lendlein, A. Copolymer networks from oligo (ε-caprolactone) and nbutyl acrylate enable a reversible bidirectional shapememory effect at human body temperature. Macromol. Rapid Commun. 2015, 36(10), 880–884.CrossRefGoogle Scholar
  24. 24.
    Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003, 24(5), 801–808.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jian-Te Dong
    • 1
  • Wei-Ke Zou
    • 1
  • Feng Chen
    • 1
  • Qian Zhao
    • 1
  1. 1.College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations