Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 8, pp 905–917 | Cite as

Recent Progress in Shape Memory Polymers for Biomedical Applications

  • Hong-Mei Chen
  • Lin Wang
  • Shao-Bing Zhou
Review
  • 234 Downloads

Abstract

Shape memory polymers (SMPs) as one type of the most important smart materials have attracted increasing attention due to their promising application in the field of biomedicine, textiles, aerospace et al. Following a brief intoduction of the conception and classification of SMPs, this review is focused on the progress of shape memory polymers for biomedical applications. The progress includes the early researches based on thermo-induced SMPs, the improvement of the stimulus, the development of shape recovery ways and the expansion of the applications in biomedical field. In addition, future perspectives of SMPs in the field of biomedicine are also discussed.

Keywords

Shape memory polymers Biomedicical application Biodegradable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Nos. 21574105 and 51725303), and the Sichuan Province Youth Science and Technology Innovation Team (No. 2016TD0026).

References

  1. 1.
    Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym Sci. 2015, 49, 79–120.CrossRefGoogle Scholar
  2. 2.
    Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445–471.CrossRefGoogle Scholar
  3. 3.
    Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shapememory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym Sci. 2012, 37(12), 1720–1763.CrossRefGoogle Scholar
  4. 4.
    Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: Past, present and future developments. Prog. Polym Sci. 2015, 49–50, 3–33.CrossRefGoogle Scholar
  5. 5.
    Liu, C.; Qin, H.; Mather, P. Review of progress in shapememory polymers. J. Mater. Chem. 2007, 17(16), 1543–1558.CrossRefGoogle Scholar
  6. 6.
    Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.CrossRefGoogle Scholar
  7. 7.
    Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y. Two-way shape memory effect in polymer laminates. Mater. Lett. 2008, 62(25), 4088–4090.CrossRefGoogle Scholar
  8. 8.
    Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C. 50th Anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 2017, 50(22), 8845–8870.CrossRefGoogle Scholar
  9. 9.
    Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296(5573), 1673–1676.CrossRefGoogle Scholar
  10. 10.
    Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R. Shapememory polymer networks from oligo (ε-caprolactone) dimethacrylates. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(7), 1369–1381.CrossRefGoogle Scholar
  11. 11.
    Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587–592.CrossRefGoogle Scholar
  12. 12.
    Zhang, Z. X.; Liao, F.; He, Z. Z.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Gao, X. L. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide). Smart Mater. Struct. 2015, 24(12), 125002.CrossRefGoogle Scholar
  13. 13.
    Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electroactive shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064–2068.CrossRefGoogle Scholar
  14. 14.
    Wang, W. X.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lu, J.; Zhou, S. The improvement of shape memory function of poly(εcaprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J. Mater. Chem. A 2016, 4(16), 5984–5992.CrossRefGoogle Scholar
  15. 15.
    Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. A novel supramolecular shape memory material based on partial α-CDPEG inclusion complex. Polymer 2008, 49(15), 3205–3210.CrossRefGoogle Scholar
  16. 16.
    Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006, 27(24), 4288–4295.CrossRefGoogle Scholar
  17. 17.
    Zheng, X.; Zhou, S.; Yu, X.; Li, X.; Feng, B.; Qu, S.; Weng, J. Effect of In vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties. J. Biomed. Mater. Res. B 2008, 86(1), 170–180.CrossRefGoogle Scholar
  18. 18.
    Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pHResponsive shape memory poly(ethylene glycol)-poly(εepsiloncaprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl. Mater. Interfaces 2015, 7(23), 12988–12999.CrossRefGoogle Scholar
  19. 19.
    Xiao, Y.; Zhou, S.; Wang, L.; Zheng, X.; Gong, T. Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Compos. Part B-Eng. 2010, 41(7), 537–542.CrossRefGoogle Scholar
  20. 20.
    Li, W.; Gong, T.; Chen, H.; Wang, L.; Li, J.; Zhou, S. Tuning surface micropattern features using a shape memory functional polymer. RSC Adv. 2013, 3(25), 9865–9874.CrossRefGoogle Scholar
  21. 21.
    Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εcaprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci-Mater. M 2012, 23(2), 581–589.CrossRefGoogle Scholar
  22. 22.
    Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 2014, 3(10), 1608–1619.CrossRefGoogle Scholar
  23. 23.
    Wang, L.; Di, S.; Wang, W.; Chen, H.; Yang, X.; Gong, T.; Zhou, S. Tunable temperature memory effect of photo-crosslinked star PCL-PEG networks. Macromolecules 2014, 47(5), 1828–1836.CrossRefGoogle Scholar
  24. 24.
    Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S. Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2014, 2(39), 6855–6866.CrossRefGoogle Scholar
  25. 25.
    Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 2013, 5(21), 10520–105208.CrossRefGoogle Scholar
  26. 26.
    Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple shape memory effect of star-shaped polyurethane. ACS Appl. Mater. Interfaces 2014, 6(9), 6545–54.CrossRefGoogle Scholar
  27. 27.
    Wang, L.; Yang, X.; Chen, H.; Yang, G.; Gong, T.; Li, W.; Zhou, S. Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym. Chem. 2013, 4(16), 4461–4468.CrossRefGoogle Scholar
  28. 28.
    Chen, H.; Li, Y.; Liu, Y.; Gong, T.; Wang, L.; Zhou, S. Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 2014, 5(17), 5168.CrossRefGoogle Scholar
  29. 29.
    Zhou, S.; Zheng, X.; Yu, X.; Wang, J.; Weng, J.; Li, X.; Feng, B.; Yin, M. Hydrogen bonding interaction of poly(D,Llactide)/hydroxyapatite nanocomposites. Chem. Mater. 2007, 19(2), 247–253.CrossRefGoogle Scholar
  30. 30.
    Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3(19), 7048.CrossRefGoogle Scholar
  31. 31.
    Zimkowski, M. M.; Rentschler, M. E.; Schoen, J.; Rech, B. A.; Mandava, N.; Shandas, R. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study. J. Biomed. Mater. Res. A 2013, 101(9), 2613–20.CrossRefGoogle Scholar
  32. 32.
    Musial-Kulik, M.; Kasperczyk, J.; Smola, A.; Dobrzynski, P. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. Int. J. Pharm. 2014, 465(1-2), 291–298.CrossRefGoogle Scholar
  33. 33.
    Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εepsilon-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci. Mater. Med. 2012, 23(2), 581–589.CrossRefGoogle Scholar
  34. 34.
    Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 2010, 20(17), 3367.CrossRefGoogle Scholar
  35. 35.
    Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47(4), 1348–1356.CrossRefGoogle Scholar
  36. 36.
    Chen, S.; Hu, J.; Yuen, C. W.; Chan, L. Novel moisturesensitive shape memory polyurethanes containing pyridine moieties. Polymer 2009, 50(19), 4424–4428.CrossRefGoogle Scholar
  37. 37.
    Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Waterdriven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86(11), 114105.CrossRefGoogle Scholar
  38. 38.
    Chen, H.; Li, Y.; Tao, G.; Wang, L.; Zhou, S. Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 2016, 7(43), 6637–6644.CrossRefGoogle Scholar
  39. 39.
    Du, H.; Zhang, J. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 2010, 6(14), 3370.CrossRefGoogle Scholar
  40. 40.
    Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shapememory effect. Macromolecules 2011, 44(17), 6827–6835.CrossRefGoogle Scholar
  41. 41.
    Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S. Waterinduced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites. Carbohydr. Polym. 2014, 104, 101–108.CrossRefGoogle Scholar
  42. 42.
    Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliver. Rev. 2012, 64(9), 866–884.CrossRefGoogle Scholar
  43. 43.
    Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-Induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33(12), 1055–1060.CrossRefGoogle Scholar
  44. 44.
    Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 2016, 7(9), 1739–1746.CrossRefGoogle Scholar
  45. 45.
    Guo, W.; Lu, C. H.; Orbach, R.; Wang, F.; Qi, X. J.; Cecconello, A.; Seliktar, D.; Willner, I. pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 2015, 27(1), 73–78.CrossRefGoogle Scholar
  46. 46.
    Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(10), 3540–3545.CrossRefGoogle Scholar
  47. 47.
    Xiao, Y.; Zhou, S.; Wang, L.; Gong, T. Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2010, 2(12), 3506–3514.CrossRefGoogle Scholar
  48. 48.
    Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012, 8(3), 1248–1259.CrossRefGoogle Scholar
  49. 49.
    Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape memory effect of poly(D,L-lactide)/Fe3O4 nan°Composites by inductive heating of magnetite particles. Colloid. Surfaces B 2009, 71(1), 67–72.CrossRefGoogle Scholar
  50. 50.
    Jiang, H.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18(11), 1471–1475.CrossRefGoogle Scholar
  51. 51.
    Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434(7035), 879–882.CrossRefGoogle Scholar
  52. 52.
    Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquidcrystalline gels by light exposure. Adv. Mater. 2003, 15(3), 201–205.CrossRefGoogle Scholar
  53. 53.
    Irie, M.; Kunwatchakun, D. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives.. Macromolecules 1986, 19(10), 2476–2480.CrossRefGoogle Scholar
  54. 54.
    Wu, L.; Jin, C.; Sun, X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 2010, 12(1), 235–241.CrossRefGoogle Scholar
  55. 55.
    Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20(17), 3335.CrossRefGoogle Scholar
  56. 56.
    Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267–270.CrossRefGoogle Scholar
  57. 57.
    Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric tripleshape materials. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(48), 18043–18047.CrossRefGoogle Scholar
  58. 58.
    Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer Networks based on poly(ω-pentadecalactone) and poly(εcaprolactone) segments as a versatile triple-shape polymer system. Adv. Funct. Mater. 2010, 20(20), 3583–3594.CrossRefGoogle Scholar
  59. 59.
    Luo, X.; Mather, P. T. Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 2010, 20(16), 2649–2656.CrossRefGoogle Scholar
  60. 60.
    Song, S.; Feng, J.; Wu, P. A new strategy to prepare polymerbased shape memory elastomers. Macromol. Rapid Commun. 2011, 32(19), 1569–1575.CrossRefGoogle Scholar
  61. 61.
    Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.CrossRefGoogle Scholar
  62. 62.
    Ahn, S. K.; Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21(23), 4543–4549.CrossRefGoogle Scholar
  63. 63.
    Li, J.; Xie, T. Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 2011, 44(1), 175–180.CrossRefGoogle Scholar
  64. 64.
    Luo, Y.; Guo, Y.; Gao, X.; Li, B. G.; Xie, T. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 2013, 25(5), 743–748.CrossRefGoogle Scholar
  65. 65.
    Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 2013, 25(32), 4466–4469.CrossRefGoogle Scholar
  66. 66.
    Pandini, S.; Passera, S.; Messori, M.; Paderni, K.; Toselli, M.; Gianoncelli, A.; Bontempi, E.; Riccö, T. Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 2012, 53(9), 1915–1924.CrossRefGoogle Scholar
  67. 67.
    Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S. Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47(5), 1768–1776.CrossRefGoogle Scholar
  68. 68.
    Kumpfer, J. R.; Rowan, S. J. Thermo-, photo-, and chemoresponsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 2011, 133(32), 12866–12874.CrossRefGoogle Scholar
  69. 69.
    Zhang, Y.; Jiang, X.; Wu, R.; Wang, W. Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J. Appl. Polym. Sci. 2016, 133, 43534.Google Scholar
  70. 70.
    Choi, N. Y.; Kelch, S.; Lendlein, A. Synthesis, Shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv. Eng. Mater. 2006, 8(5), 439–445.CrossRefGoogle Scholar
  71. 71.
    Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A. Shapememory polymer networks from oligo [(ε-hydroxycaproate)-coglycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007, 8(3), 1018–1027.CrossRefGoogle Scholar
  72. 72.
    Lu, H.; Huang, W. M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett. 2013, 102(23), 231910.CrossRefGoogle Scholar
  73. 73.
    Lu, H.; Gou, J. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotech. Lett. 2012, 4(12), 1155–1159.CrossRefGoogle Scholar
  74. 74.
    Lu, H.; Bai, P.; Yin, W.; Liang, F.; Gou, J. Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotech. Lett. 2013, 5(7), 732–736.CrossRefGoogle Scholar
  75. 75.
    Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J. C. Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol. Chem. Phys. 2013, 214(8), 912–923.CrossRefGoogle Scholar
  76. 76.
    Anthamatten, M.; Roddecha, S.; Li, J. Energy storage capacity of shape-memory polymers. Macromolecules 2013, 46(10), 4230–4234.CrossRefGoogle Scholar
  77. 77.
    Liu, L.; Shen, B.; Jiang, D.; Guo, R.; Kong, L.; Yan, X. Watchband-like supercapacitors with body temperature inducible shape memory Ability. Adv. Energy Mater. 2016, 6, 1600763.CrossRefGoogle Scholar
  78. 78.
    Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42(17), 7244–7256.CrossRefGoogle Scholar
  79. 79.
    Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S. Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv. 2014, 4(61), 32276–32282.CrossRefGoogle Scholar
  80. 80.
    Xiao, X.; Xie, T.; Cheng, Y. T. Self-healable graphene polymer composites. J. Mater. Chem. 2010, 20(17), 3508–3514.CrossRefGoogle Scholar
  81. 81.
    Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3(2), 152–161.CrossRefGoogle Scholar
  82. 82.
    Luo, X.; Mather, P. T. Shape memory assisted self-healing coating. ACS Macro. Lett. 2013, 2(2), 152–156.CrossRefGoogle Scholar
  83. 83.
    Birjandi Nejad, H.; Garrison, K. L.; Mather, P. T. Comparative analysis of shape memory-based self-healing coatings. J. Polym. Sci., Part B: Polym. Phys. 2016, 54(14), 1415–1426.CrossRefGoogle Scholar
  84. 84.
    Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5(37), 28896–28900.CrossRefGoogle Scholar
  85. 85.
    Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 2009, 21(32-33), 3394–3398.CrossRefGoogle Scholar
  86. 86.
    Müller, A.; Zink, M.; Hessler, N.; Wesarg, F.; Müller, F. A.; Kralisch, D.; Fischer, D. Bacterial nanocellulose with a shapememory effect as potential drug delivery system. RSC Adv. 2014, 4(100), 57173–57184.CrossRefGoogle Scholar
  87. 87.
    Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block copolymers for fast self-expandable stents. Biomaterials 2010, 31(32), 8132–8140.CrossRefGoogle Scholar
  88. 88.
    Huang, W. M.; Song, C. L.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H. B.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug Deliver. Rev. 2013, 65(4), 515–535.CrossRefGoogle Scholar
  89. 89.
    Sun, L.; Huang, W. M. Thermo/moisture responsive shapememory polymer for possible surgery/operation inside living cells in future. Mater. Design 2010, 31(5), 2684–2689.CrossRefGoogle Scholar
  90. 90.
    Bilici, C.; Can, V.; Nochel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49(19), 7442–7449.CrossRefGoogle Scholar
  91. 91.
    Migneco, F.; Huang, Y. C.; Birla, R. K.; Hollister, S. J. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 2009, 30(33), 6479.CrossRefGoogle Scholar
  92. 92.
    Yang, X.; Cui, C.; Tong, Z.; Sabanayagam, C. R.; Jia, X. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomater. 2013, 9(9), 8232–8244.CrossRefGoogle Scholar
  93. 93.
    Hiebl, B.; Mrowietz, C.; Goers, J.; Bahramsoltani, M.; Plendl, J.; Kratz, K.; Lendlein, A.; Jung, F. In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen’s egg chorioallantoic membrane test. Clin. Hemorheol. Microcirc. 2010, 46(2-3), 233–238.Google Scholar
  94. 94.
    Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C.; Luo, E.; Weng, J.; Zhou, S. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15(3), 1019–1030.CrossRefGoogle Scholar
  95. 95.
    Gong, T.; Zhao, K.; Liu, X.; Lu, L.; Liu, D.; Zhou, S. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12(41), 5769–5778.CrossRefGoogle Scholar
  96. 96.
    Liu, D.; Xiang, T.; Gong, T.; Tian, T.; Liu, X.; Zhou, S. Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization. ACS Appl. Mater. Interfaces 2017, 9(23), 19725–19735.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina
  2. 2.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations