Chinese Journal of Polymer Science

, Volume 36, Issue 9, pp 1043–1046 | Cite as

The Silk Textile Embedded in Silk Fibroin Composite: Preparation and Properties

  • Yu Duan
  • Xin Chen
  • Zheng-Zhong Shao


Silk reinforced silk-fibroin-based composites were prepared by embedding of silk textile into regenerated silk fibroin (RSF) matrix. The breaking stress and breaking strain of the composites were found 37.7 MPa and 71.1% respectively at (95 ± 5)% RH. Morphological analysis was carried out to observe fracture behavior of the samples. The in vitro biodegradation test showed that the composite degraded slowly and lost 70% weight at the end of 168 h. Moreover, compared with RSF pure film, the composite kept strength and toughness much longer time. In conclusion, this composite has the potential for more accurate cytology research and biomedical tests in the future.


Silk protein Biomaterials Composite Mechanical properties Natural product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 21574024).

Supplementary material

10118_2018_2117_MOESM1_ESM.pdf (719 kb)
The Silk Textile Embedded in Silk Fibroin Composite: Preparation and Properties


  1. 1.
    Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L. Silk-based biomaterials. Biomaterials 2003, 24(3), 401–416CrossRefGoogle Scholar
  2. 2.
    Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6(10), 1612–1631CrossRefGoogle Scholar
  3. 3.
    Sun, H. X.; Wang, S.; Zhu, H. S. Surface modification of blend films composed of silk fibroin and poly(ethylene glycol) macromer and their in vitro antithrombogenicity. Chinese J. Polym. Sci. 2004, 22(4), 399–403Google Scholar
  4. 4.
    Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016, 31, 1–16CrossRefGoogle Scholar
  5. 5.
    Wang, Q.; Yang, Y. H.; Chen, X.; Shao, Z. Z. Investigation of rheological properties and conformation of silk fibroin in the solution of AmimCl. Biomacromolecules 2012, 13(6), 1875–1881CrossRefGoogle Scholar
  6. 6.
    Hu, X.; Kaplan, D. L.; Cebe, P. Effect of water on the thermal properties of silk fibroin. Thermochim. Acta 2007, 461, 137–144CrossRefGoogle Scholar
  7. 7.
    Motta, A.; Fambri, L.; Migliaresi, C. Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol. Chem. Phys. 2002, 203, 1658–1665CrossRefGoogle Scholar
  8. 8.
    Faruk, O. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596CrossRefGoogle Scholar
  9. 9.
    Yao, H.; Niu, J. L.; Zhang, J.; Ning, N. Y.; Yang, X. Q.; Tian, M.; Sun, X. L.; Zhang, L. Q.; Yan, S. L. Morphologies and mechanical properties of cis-1,4-butadiene rubber/polyethylene blends. Chinese J. Polym. Sci. 2016, 34(7), 820–829CrossRefGoogle Scholar
  10. 10.
    Azwa, Z.; Yousif, B.; Manalo, A.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Design 2013, 47(9), 424–442CrossRefGoogle Scholar
  11. 11.
    Han, S. O.; Lee, S. M.; Park, W. H.; Cho, D. Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. J. Appl. Polym. Sci. 2006, 100, 4972–4980CrossRefGoogle Scholar
  12. 12.
    Yuan, Q. Q.; Yao, J. R.; Chen, X.; Huang, L.; Shao, Z. Z. The preparation of high performance silk fiber/fibroin composite. Polymer 2010, 51, 4843–4849CrossRefGoogle Scholar
  13. 13.
    Luo, K. Y.; Yang, Y. H.; Shao, Z. Z. Physically crosslinked biocompatible silk-fibroin-based hydrogels with high mechanical performance. Adv. Funct. Mater. 2016, 26, 872–880CrossRefGoogle Scholar
  14. 14.
    Zhou, H.; Shao, Z. Z.; Chen, X. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber. Chinese J. Polym. Sci. 2014, 32(1), 29–34CrossRefGoogle Scholar
  15. 15.
    Numata, K.; Cebe, P.; Kaplan, D. L. Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 2010, 31, 2926–2933CrossRefGoogle Scholar
  16. 16.
    Porter, D.; Vollrath, F.; Tian, K.; Chen, X.; Shao, Z. Z. A kinetic model for thermal degradation in polymers with specific application to proteins. Polymer 2009, 50(7), 1814–1818CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced MaterialsFudan UniversityShanghaiChina

Personalised recommendations