Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 9, pp 1019–1026 | Cite as

Synthesis of Highly Regioregular, Head-to-Tail Coupled Poly(3-octylesterthiophene) via C—H/C—H Coupling Polycondensation

  • Qiang Zhang
  • Yue-Feng Li
  • Lu-Di Deng
  • Lin-Lin Zhao
  • Chen-Xi Li
  • Yan Lu
Article

Abstract

Highly regioregular, head-to-tail coupled poly(3-octylesterthiophene) was synthesized by the Pd-catalysed oxidative C—H/C—H coupling polycondensation. The regioregularity of polymer products was confirmed by the 1H-NMR technique. Furthermore, the effects of various reaction factors including polymerization temperature, solvents and catalysts etc. on the yield, molecular weight and structural regioregularity of the resultant polymers were systematically studied. The optical, electrochemical and crystallization properties of the resultant P3OET with different HT regioregularities in solution and film state were studied by UV-Vis and fluorescent spectroscopy, cyclic voltammetry and X-ray diffraction (XRD), resepectively.

Keywords

C—H/C—H coupling polymerization Pd catalysed oxidative Poly(thiophene)s 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21604063 and 51373122) and China Postdoctoral Science Foundation (No. 2016M591392).

Supplementary material

10118_2018_2116_MOESM1_ESM.pdf (1.4 mb)
Synthesis of Highly Regioregular, Head-to-Tail Coupled Poly(3-octylesterthiophene) via C—H/C—H Coupling Polycondensation

References

  1. 1.
    Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42(23), 8895–8999.CrossRefGoogle Scholar
  2. 2.
    Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2011, 112(4), 2208–2267.CrossRefGoogle Scholar
  3. 3.
    Kim, D. H.; Lee, B. L.; Moon, H.; Kang, H. M.; Jeong, E. J.; Park, J. I.; Han, K. M.; Lee, S.; Yoo, B. W.; Koo, B. W.; Kim, J. Y.; Lee, W. H.; Cho, K.; Becerril, H. A.; Bao, Z. Liquidcrystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J. Am. Chem. Soc. 2009, 131(17), 6124–6132.CrossRefGoogle Scholar
  4. 4.
    Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. Stille polycondensation for synthesis of functional materials. Chem. Rev. 2011, 111(3), 1493–1528.CrossRefGoogle Scholar
  5. 5.
    Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109(3), 897–1091.CrossRefGoogle Scholar
  6. 6.
    Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107(4), 953–1010.CrossRefGoogle Scholar
  7. 7.
    Heeger, A. Semiconducting polymers: the third generation. Chem. Soc. Rev. 2010, 39(7), 2354–2371.CrossRefGoogle Scholar
  8. 8.
    Armstrong, N. R.; Veneman, P. A.; Ratcliff, E.; Placencia, D.; Brumbach, M. Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes. Acc. Chem. Res. 2009, 42(11), 1748–1757.CrossRefGoogle Scholar
  9. 9.
    Chen, Y.; Wan, X.; Long, G. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46(11), 2645–2655.CrossRefGoogle Scholar
  10. 10.
    Lin, Y.; Fan, H.; Li, Y.; Zhan, X. Thiazole-based organic semiconductors for organic electronics. Adv. Mater. 2012, 24(23), 3087–3106.CrossRefGoogle Scholar
  11. 11.
    Chen, J.; Cao, Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 2009, 42(11), 1709–1718.CrossRefGoogle Scholar
  12. 12.
    Murphy, A. R.; Fréchet, J. M. J. Organic semiconducting oligomers for use in thin film transistors. Chem. Rev. 2007, 107(4), 1066–1096.CrossRefGoogle Scholar
  13. 13.
    Cheng, D.; Li, Y.; Wang, J.; Sun, Y.; Jin, L.; Li, C.; Lu, Y. Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chem. Commun. 2015, 51(40), 8544–8546.CrossRefGoogle Scholar
  14. 14.
    Pomerantz, M.; Cheng, Y.; Kasim, R. K.; Elsenbaumer, R. L. Poly(alkyl thiophene-3-carboxylates). Synthesis, properties and electroluminescence studies of polythiophenes containing a carbonyl group directly attached to the ring. J. Mater. Chem. 1999, 9(9), 2155–2163.Google Scholar
  15. 15.
    Osaka, I.; McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 2008, 41(9), 1202–1214.CrossRefGoogle Scholar
  16. 16.
    Osaka, I.; McCullough, R. D., Regioregular and regiosymmetric polythiophenes. In "Conjugated Polymer Synthesis", Wiley-VCH Verlag GmbH & Co. KGaA: 2010; p. 59–90.CrossRefGoogle Scholar
  17. 17.
    Steyrleuthner, R.; Di Pietro, R.; Collins, B. A.; Polzer, F.; Himmelberger, S.; Schubert, M.; Chen, Z.; Zhang, S.; Salleo, A.; Ade, H.; Facchetti, A.; Neher, D. The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. J. Am. Chem. Soc. 2014, 136(11), 4245–4256.CrossRefGoogle Scholar
  18. 18.
    Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Fréchet, J. M. J. The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. J. Am. Chem. Soc. 2008, 130(48), 16324–16329.CrossRefGoogle Scholar
  19. 19.
    Chochos, C. L.; Choulis, S. A. How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog. Polym. Sci. 2011, 36(10), 1326–1414.CrossRefGoogle Scholar
  20. 20.
    McCullough, R. D.; Lowe, R. D. Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun. 1992, (1), 70–72.CrossRefGoogle Scholar
  21. 21.
    Chen, T. A.; Rieke, R. D. The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 1992, 114(25), 10087–10088.CrossRefGoogle Scholar
  22. 22.
    Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. A simple method to prepare head-to-tail coupled, regioregular poly(3-23 alkylthiophenes) using grignard metathesis. Adv. Mater. 1999, 11(3), 250–253.CrossRefGoogle Scholar
  23. 23.
    Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 2012, 134(22), 9074–9077.CrossRefGoogle Scholar
  24. 24.
    Iraqi, A. W.; Barker, G. Synthesis and characterisation of telechelic regioregular head-to-tail poly(3-alkylthiophenes). J. Mater. Chem. 1998, 8(1), 25–29.CrossRefGoogle Scholar
  25. 25.
    Baek, M. J.; Lee, S. H.; Zong, K.; Lee, Y. S. Low band gap conjugated polymers consisting of alternating dodecyl thieno[3,4-b]thiophene-2-carboxylate and one or two thiophene rings: synthesis and photovoltaic property. Synth. Met. 2010, 160(11-12), 1197–1203.CrossRefGoogle Scholar
  26. 26.
    Mercier, L. G.; Leclerc, M. Direct (hetero)arylation: A new tool for polymer chemists. Acc. Chem. Res. 2013, 46(7), 1597–1605.CrossRefGoogle Scholar
  27. 27.
    Berrouard, P.; Najari, A.; Pron, A.; Gendron, D.; Morin, P. O.; Pouliot, J. R.; Veilleux, J.; Leclerc, M. Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. Angew. Chem. Int. Ed. 2012, 51(9), 2068–2071.CrossRefGoogle Scholar
  28. 28.
    Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa, F. Palladiumcatalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J. Am. Chem. Soc. 2010, 132(33), 11420–11421.CrossRefGoogle Scholar
  29. 29.
    Kuramochi, M.; Kuwabara, J.; Lu, W.; Kanbara, T. Direct arylation polycondensation of bithiazole derivatives with various acceptors. Macromolecules 2014, 47(21), 7378–7385.CrossRefGoogle Scholar
  30. 30.
    Huang, Q.; Qin, X.; Li, B.; Lan, J.; Guo, Q.; You, J. Cucatalysed oxidative C―H/C―H coupling polymerisation of benzodiimidazoles: an efficient approach to regioregular polybenzodiimidazoles for blue-emitting materials. Chem. Commun. 2014, 50(89), 13739–13741.CrossRefGoogle Scholar
  31. 31.
    Zhang, Q.; Wan, X.; Lu, Y.; Li, Y.; Li, Y.; Li, C.; Wu, H.; Chen, Y. The synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers using a Pd-catalyzed oxidative C―H/C―H homopolymerization reaction. Chem. Commun. 2014, 50(83), 12497–12499.CrossRefGoogle Scholar
  32. 32.
    Zhang, Q.; Li, Y.; Lu, Y.; Zhang, H.; Li, M.; Yang, Y.; Wang, J.; Chen, Y.; Li, C. Pd-catalysed oxidative C―H/C―H coupling polymerization for polythiazole-based derivatives. Polymer 2015, 68(0), 227–233.CrossRefGoogle Scholar
  33. 33.
    Tsuchiya, K.; Ogino, K. Catalytic oxidative polymerization of thiophene derivatives. Polym. J. 2013, 45(3), 281–286.CrossRefGoogle Scholar
  34. 34.
    Hu, X.; Zuo, L.; Fu, W.; Larsen-Olsen, T. T.; Helgesen, M.; Bundgaard, E.; Hagemann, O.; Shi, M.; Krebs, F. C.; Chen, H. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications. J. Mater. Chem. 2012, 22(31), 15710–15716.CrossRefGoogle Scholar
  35. 35.
    Sato, M.; Morii, H. Nuclear magnetic resonance studies on electrochemically prepared poly(3-dodecylthiophene). Macromolecules 1991, 24(5), 1196–1200.CrossRefGoogle Scholar
  36. 36.
    Sato, M.; Shimizu, T.; Yamauchi, A. Electrochemical copolymerization of 3-dodecylthiophene and 3-methylthiophene. Makromol. Chem. 1990, 191(2), 313–19.CrossRefGoogle Scholar
  37. 37.
    Pomerantz, M.; Yang, H.; Cheng, Y. Poly(alkyl thiophene-3-carboxylates). Synthesis and characterization of polythiophenes with a carbonyl group directly attached to the ring. Macromolecules 1995, 28(17), 5706–5708.Google Scholar
  38. 38.
    Gobalasingham, N. S.; Noh, S.; Thompson, B. C. Palladiumcatalyzed oxidative direct arylation polymerization (Oxi-DArP) of an ester-functionalized thiophene. Polym. Chem. 2016, 7(8), 1623–1631.CrossRefGoogle Scholar
  39. 39.
    Forrest, J. 121. The Ullmann biaryl synthesis. Part V. The influence of ring substituents on the rate of self-condensation of an aryl halide. Journal of the Chemical Society (Resumed) 1960, 592–594.Google Scholar
  40. 40.
    Huggins, M. Dependence of polymer properties on temperature of polymerization. J. Am. Chem. Soc. 1944, 66(11), 1991–1992.CrossRefGoogle Scholar
  41. 41.
    Rudenko, A. E.; Wiley, C. A.; Tannaci, J. F.; Thompson, B. C. Optimization of direct arylation polymerization conditions for the synthesis of poly(3-hexylthiophene). J. Polym. Sci., Part A: Polym. Chem. 2013, 51(12), 2660–2668.CrossRefGoogle Scholar
  42. 42.
    Zhang, Q.; Chang, M.; Lu, Y.; Sun, Y.; Li, C.; Yang, X.; Zhang, M.; Chen, Y. A direct C―H coupling method for preparing π-conjugated functional polymers with high regioregularity. Macromolecules 2018, 51(2), 379–388.CrossRefGoogle Scholar
  43. 43.
    Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. Palladium(II)-catalyzed oxidative C―H/C―H crosscoupling of heteroarenes. J. Am. Chem. Soc. 2010, 132(6), 1822–1824.CrossRefGoogle Scholar
  44. 44.
    Yao, S.; Beginn, U.; Gress, T.; Lysetska, M.; Würthner, F. Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation. J. Am. Chem. Soc. 2004, 126(26), 8336–8348.CrossRefGoogle Scholar
  45. 45.
    West, W.; Pearce, S. The dimeric state of cyanine dyes. J Phys. Chen. 1965, 69(6), 1894–1903.CrossRefGoogle Scholar
  46. 46.
    Yahav, G.; Haas, Y. Silicon tetrafluoride visible luminescence induced by high-power CO2 laser irradiation. Chem. Phys. Lett. 1981, 83(3), 493–497.CrossRefGoogle Scholar
  47. 47.
    Potai, R.; Traiphol, R. Control over the photophysical properties of nanoparticles of regioregular poly(3-octylthiophene) using various poor solvents. Synth. Met. 2015, 203, 1–9.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science &EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations