Chinese Journal of Polymer Science

, Volume 36, Issue 9, pp 1063–1069 | Cite as

Improved Mechanical Properties of Poly(butylene succinate) Membrane by Co-electrospinning with Gelatin

  • Lu Chen
  • Hui-Hui Cheng
  • Jiang Xiong
  • Ya-Ting Zhu
  • Hong-Peng Zhang
  • Xi Xiong
  • Yu-Man Liu
  • Jian Yu
  • Zhao-Xia Guo


Gelatin, a natural proteinous polymer, was used to co-electrospin with poly(butylene succinate) (PBS) in order to improve the mechanical properties of PBS membrane and facilitate its applications in biomedical field. The PBS/gelatin blend membranes have narrower distribution of fiber diameter and smoother surface than neat PBS membrane. The contact angles, water absorption rates and water uptakes of the PBS/gelatin blend membranes were measured, showing increased hydrophilicity. The interaction between PBS and gelatin was investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). The mechanical properties of PBS/gelatin blend membranes in both dry and wet states were evaluated by uniaxial tensile tests. In the dry state, the PBS/gelatin blend membrane containing 10% gelatin has a 3-times increase in tensile strength without any adverse effect on ductility because of the existence of interaction between the two blend components, little change in crystallinity of PBS, and possible interaction between any adjacent fibers; the tensile strength and elongation at break are even better in the wet state attributed to some gelatin on fiber surfaces, which act as a binder in the presence of water. The potential applications of PBS/gelatin blend membranes were demonstrated by successful immobilization of thrombin, a clinically-used hemostatic drug. The thrombin-loaded membrane could be used for rapid hemostasis.


PBS Gelatin Electrospinning Mechanical properties Blending 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, for kindly providing the PBS. This work was financially supported by the National Natural Science Foundation of China (No. 51173093) and Clinical Innovation Program of Chinese PLA General Hospital (No. 2012FC-ZHCG- 4001).


  1. 1.
    Li, H.; Chang, J.; Cao, A.; Wang, J. In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial. Macromol. Biosci. 2005, 5(5), 433–440.CrossRefGoogle Scholar
  2. 2.
    Jeong, E. H.; Im, S. S.; Youk, J. H. Electrospinning and structural characterization of ultrafine poly(butylene succinate) fibers. Polymer 2005, 46(23), 9538–9543.CrossRefGoogle Scholar
  3. 3.
    Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol. J. 2010, 5(11), 1149–1163.CrossRefGoogle Scholar
  4. 4.
    Wang, X. W.; Zhang, C. A.; Wang, P. L.; Zhao, J.; Zhang, W.; Ji, J. H.; Hua, K.; Zhou, J.; Yang, X. B.; Li, X. P. Enhanced performance of biodegradable poly(butylene succinate)/graphene oxide nanocomposites via in situ polymerization. Langmuir 2012, 28(18), 7091–7095.CrossRefGoogle Scholar
  5. 5.
    Tian, L.; Wang, P.; Zhao, Z.; Ji, J. Antimicrobial activity of electrospun poly(butylenes succinate) fiber mats containing PVP-capped silver nanoparticles. Appl. Biochem. Biotechnol. 2013, 171(7), 1890–1899.CrossRefGoogle Scholar
  6. 6.
    Kimble, L. D.; Bhattacharyya, D. In vitro degradation effects on strength, stiffness, and creep of PLLA/PBS: a potential stent material. Int. J. Polym. Mater. Polym. Biomater. 2015, 64(6), 299–310.CrossRefGoogle Scholar
  7. 7.
    Liu, Y.; He, J. H.; Yu, J. Y. Preparation and morphology of poly(butylene succinate) nanofibers via electrospinning. Fibres Text. East. Eur. 2007, 15(4), 30–33.Google Scholar
  8. 8.
    San. Z. X.; Li. C. J. Study on soakage control of PBS nanofibers by electrospinning. New Chem. Mater 2007, 35(2), 63–65.Google Scholar
  9. 9.
    Su, Z.; Ding, J.; Wei, G. Electrospinning: a facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv 2014, 4(94), 52598–52610.CrossRefGoogle Scholar
  10. 10.
    Zhang, M.; Zhao, X.; Zhang, G.; Wei, G.; Su, Z. Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B 2017, 5(9), 1699–1711.CrossRefGoogle Scholar
  11. 11.
    Abrigo, M.; McArthur, S. L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol. Biosci. 2014, 14(6), 772–792.CrossRefGoogle Scholar
  12. 12.
    Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185(27), 12–21.CrossRefGoogle Scholar
  13. 13.
    Wang, Z. G.; Wan, L. S.; Liu, Z. M.; Huang, X. J.; Xu, Z. K. Enzyme immobilization on electrospun polymer nanofibers: an overview. J. Mol. Catal. B Enzym. 2009, 56(4), 189–195.CrossRefGoogle Scholar
  14. 14.
    Rieger, K. A.; Birch, N. P.; Schiffman, J. D. Designing electrospun nanofiber mats to promote wound healing—a review. J. Mater. Chem. B 2013, 1(36), 4531–4541.CrossRefGoogle Scholar
  15. 15.
    Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H.; Yu, J.; Guo, Z. X. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci. 2017, 35(6), 713–720.CrossRefGoogle Scholar
  16. 16.
    Liu, H. H.; Li, Q.; Liang, X.; Xiong, X.; Yu, J.; Guo, Z. X. Antibacterial polycaprolactone electrospun fiber mats prepared by soluble eggshell membrane protein–assisted adsorption of silver nanoparticles. J. Appl. Polym. Sci. 2016, 133(35), 43850.Google Scholar
  17. 17.
    Ma, L. C.; Wang, J. N.; Li, L.; Li, C. J. Preparation of PET/CTS antibacterial composites nanofiber membranes Used for air filter by electrospinning. Acta Polymerica Sinica (in Chinese) 2015, (2), 3–227.Google Scholar
  18. 18.
    Xu, T.; Yang, H. Y.; Yang, D. Z.; Yu, Z. Z. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl. Mater. Interfaces 2017, 9(25), 21094–21104.CrossRefGoogle Scholar
  19. 19.
    Arras, M. M. L.; Jana, R.; Mühlstädt, M.; Maenz, S.; Andrews, J.; Su, Z.; Grasl, C.; Jandt, K. D. In situ formation of nanohybrid shish-kebabs during electrospinning for the creation of hierarchical shish-kebab structures. Macromolecules 2016, 49(9), 3550–3558.CrossRefGoogle Scholar
  20. 20.
    Cheng, H. H.; Xiong, J.; Xie, Z. N.; Zhu, Y. T.; Liu, Y. M.; Wu, Z. Y.; Yu, J.; Guo, Z. X. Thrombin-loaded poly(butylene succinate)-based electrospun membranes for rapid hemostatic application. Macromol. Mater. Eng. DOI: 10.1002/mame.201700395.Google Scholar
  21. 21.
    Li, Y.; Zhang, P.; Ouyang, Z.; Zhang, M.; Lin, Z.; Li, J.; Su, Z.; Wei, G. Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane-modifi ed electrode, and super performance for electrochemical sensing. Adv. Funct. Mater. 2016, 26, 3–2134.CrossRefGoogle Scholar
  22. 22.
    Zhang, P.; Zhao, X.; Ji, Y.; Ouyang, Z.; Wen, X.; Li, J.; Su, Z.; Wei, G. Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J. Mater. Chem. B 2015, 3, 3–2496.Google Scholar
  23. 23.
    Su, Z.; Li, J.; Ouyang, Z.; Matthias, M. L. A.; Wei, G.; Klaus, D. Biomimetic 3D hydroxyapatite architectures with interconnected pores based on electrospun biaxially orientated PCL nanofibers. RSC Adv 2014, 4, 3–14839.Google Scholar
  24. 24.
    Li, X.; Xie, J.; Yuan, X.; Xia, Y. Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 2008, 24(24), 14145–14150.CrossRefGoogle Scholar
  25. 25.
    Shi, R.; Geng, H.; Gong, M.; Ye, J.; Wu, C.; Hu, X.; Zhang, L. Long-acting and broad-spectrum antimicrobial electrospun poly(ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J. Colloid Interface Sci. 2018, 509, 3–284.CrossRefGoogle Scholar
  26. 26.
    Behrens, A. M.; Sikorski, M. J.; Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A 2014, 102(11), 4182–4194.CrossRefGoogle Scholar
  27. 27.
    Hwang, P. T. J.; Murdock, K.; Alexander, G. C.; Salaam, A. D.; Ng, J. I.; Lim, D. J.; Dean, D.; Jun, H. W. Poly(ε-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. J. Biomed. Mater. Res. A 2016, 104(4), 1017–1029.CrossRefGoogle Scholar
  28. 28.
    Meng, Z. X.; Wang, Y. S.; Ma, C.; Zheng, W.; Li, L.; Zheng, Y. F. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater. Sci. Eng. C 2010, 30(8), 1204–1210.CrossRefGoogle Scholar
  29. 29.
    Dhandayuthapani, B.; Krishnan, U. M.; Sethuraman, S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94(1), 264–272.Google Scholar
  30. 30.
    Kim, S. E.; Heo, D. N.; Lee, J. B.; Kim, J. R.; Park, S. H.; Jeon, S. H.; Kwon, I. K. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 2009, 4(4), 044106.CrossRefGoogle Scholar
  31. 31.
    Jamadi, E. S.; Ghasemi Mobarakeh, L.; Morshed, M.; Sadeghi, M.; Prabhakaran, M. P.; Ramakrishna, S. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration. Mater. Sci. Eng. C 2016, 63, 3–116.CrossRefGoogle Scholar
  32. 32.
    Lee, J.; Tae, G.; Kim, Y. H.; Park, I. S.; Kim, S.H.; Kim, S. H. The effect of gelatin incorporation into electrospun poly(Llactide-co-ε-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008, 29(12), 1872–1879.CrossRefGoogle Scholar
  33. 33.
    Yan, S.; Xiaoqiang, L.; Shuiping, L.; Hongsheng, W.; Chuanglong, H. Fabrication and properties of PLLA-gelatin nanofibers by electrospinning. J. Appl. Polym. Sci. 2010, 117(1), 542–547.Google Scholar
  34. 34.
    Yao, R.; He, J.; Meng, G.; Jiang, B.; Wu, F. Electrospun PCL/gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J. Biomater. Sci. Polym. Ed. 2016, 27(9), 824–838.CrossRefGoogle Scholar
  35. 35.
    Xiong, X.; Li, Q.; Lu, J. W.; Guo, Z. X.; Sun, Z. H.; Yu, J. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers. J. Biomater. Sci.-Polym. Ed. 2012, 23(9), 1217–1231.Google Scholar
  36. 36.
    Mao, B.; Liu, B.; Wang, Y. F.; Li, G. N.; Song, Y. Z.; Ma, L. P.; Liu, G. H. Preparation of Au colloid of small size in aqueous solution. Rare Met. Mater. Eng. 2009, 38(3), 515–518.Google Scholar
  37. 37.
    Zhang, X. C.; Xiong, X.; Yu, J.; Guo, Z. X. Aminefunctionalized thermoplastic polyurethane electrospun fibers prepared by co-electrospinning with 3- aminopropyltriethoxysilane and preparation of conductive fiber mats. Polymer 2012, 53(22), 5190–5196.CrossRefGoogle Scholar
  38. 38.
    Cheng, H. H.; Chen, F.; Yu, J.; Guo, Z. X. Gold-nanoparticledecorated thermoplastic polyurethane electrospun fibers prepared through a chitosan linkage for catalytic applications. J. Appl. Polym. Sci. 2016, 133, 44336.Google Scholar
  39. 39.
    Xiong, X.; Li, Q.; Zhang, X. C.; Yu, J.; Guo, Z. X. Preparation, characterization and application of amine-functionalized poly(lactic acid) electrospun fibers. Chem. J. Chinese Universities 2014, 35(6), 1323–1329.Google Scholar
  40. 40.
    Rong, J.; Liang, M.; Xuan, F.; Sun, J.; Zhao, L.; Zhen, H.; Tian, X.; Liu, D.; Zhang, Q.; Peng, C.; Yao, T.; Li, F.; Wang, X.; Han, Y.; Yu, W. Alginate-calcium microsphere loaded with thrombin: A new composite biomaterial for hemostatic embolization. Int. J. Biol. Macromol. 2015, 75, 479–488.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lu Chen
    • 1
  • Hui-Hui Cheng
    • 1
  • Jiang Xiong
    • 2
  • Ya-Ting Zhu
    • 2
  • Hong-Peng Zhang
    • 2
  • Xi Xiong
    • 1
  • Yu-Man Liu
    • 1
  • Jian Yu
    • 1
  • Zhao-Xia Guo
    • 1
  1. 1.Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Vascular and Endovascular SurgeryChinese PLA General HospitalBeijingChina

Personalised recommendations