Skip to main content
Log in

Dewetting Kinetics of Thin Polymer Films with Different Architectures: Effect of Polymer Adsorption

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film (LPS), the 3-arm star polystyrene film (3SPS) and the ring polystyrene film (RPS) on the silanized Si substrate. Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films. On the silanized Si substrate, the 3SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result, the wetting layer forms more easily. For LPS films, with the decrease of annealing temperature, the kinetics of polymer film changes from exponential behavior to slip dewetting. As a comparison, the stability of 3SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior. The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting. Additionally, Brownian dynamics (BD) simulation shows that the absolute values of adsorption energy (ε) gradually increase from linear polymer (−0.3896) to ring polymer (−0.4033) and to star polymer (−0.4264), which is consistent with the results of our adsorption experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, X.; Yuan, H.; Blencowe, A.; Qiao, G. G.; Genzer, J.; Spontak, R. J. Film-stabilizing attributes of polymeric core-shell nanoparticles. ACS Nano 2015, 9(8), 7940–7949.

    Article  CAS  PubMed  Google Scholar 

  2. Roy, S.; Bandyopadhyay, D.; Karim, A.; Mukherjee, R. Interplay of substrate surface energy and nanoparticle concentration in suppressing polymer thin film dewetting. Macromolecules 2015, 48(2), 373–382.

    Article  CAS  Google Scholar 

  3. Luo, H.; Gersappe, D. Dewetting dynamics of nanofilled polymer thin films. Macromolecules 2004, 37(15), 5792–5799.

    Article  CAS  Google Scholar 

  4. Feng, Y.; Karim, A.; Weiss, R. A.; Douglas, J. F.; Han, C. C. Control of polystyrene film dewetting through sulfonation and metal complexation. Macromolecules 1998, 31(2), 484–493.

    Article  CAS  Google Scholar 

  5. Henn, G.; Bucknall, D. G.; Stamm, M.; Vanhoorne, P.; Jérôme, R. Chain end effects and dewetting in thin polymer films. Macromolecules 1996, 29(12), 4305–4313.

    Article  CAS  Google Scholar 

  6. Li, S. J.; Zhang, W. X.; Jiang, F.; Lu, Y. Y.; Shi, T. F.; An, L. J. Dynamics of hole growing in polymer thin films during dewetting. Acta Polymerica Sinica (in Chinese) 2014, 24(9), 1174–1182.

    Google Scholar 

  7. Wang, W. C.; Shi, K., Pan, Y. X.; Peng, C.; Zhao, Z. L.; Liu, W.; Liu, Y. G.; Ji, X. L. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets. Chinese J. Polym. Sci. 2016, 34(4), 475–482.

    Article  CAS  Google Scholar 

  8. Zhu, D. S.; Liu, Y. X.; Chen, E. Q.; Li, M.; Cheng, S. Z. D. Pseudo-dewetting behavior of low molecular weight poly(ethylene oxide) melts on mica surface. Acta Polymerica Sinica (in Chinese) 2006, (9), 1125–1128.

    Google Scholar 

  9. Mukherjee, R. Instability, self-organization and pattern formation in thin soft films. Soft Matter 2015, 11(45), 8717–8740.

    Article  CAS  PubMed  Google Scholar 

  10. Roy, S.; Bandyopadhyay, D.; Karim, A.; Mukherjee, R. Interplay of substrate surface energy and nanoparticle concentration in suppressing polymer thin film dewetting. Macromolecules 2015, 48(2), 373–382.

    Article  CAS  Google Scholar 

  11. Mukherjee, R.; Das, S.; Das, A.; Sharma, S. K.; Raychaudhuri, A. K.; Sharma, A. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics. ACS Nano 2010, 4(7), 3709–3724.

    Article  CAS  PubMed  Google Scholar 

  12. Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251.

    Article  CAS  Google Scholar 

  13. Gabriele, S.; Sclavons, S.; Reiter, G.; Damman, P. Disentanglement time of polymers determines the onset of rim instabilities in dewetting. Phys. Rev. Lett. 2006, 96(15), 156105.

    Article  CAS  PubMed  Google Scholar 

  14. Damman, P.; Gabriele, S.; Coppée, S.; Desprez, S.; Villers, D.; Vilmin, T.; Raphaël, E.; Hamieh, M.; Akhrass, S. A.; Reiter, G. Relaxation of residual stress and reentanglement of polymers in spin-coated films. Phys. Rev. Lett. 2007, 99(3), 036101.

    Article  CAS  PubMed  Google Scholar 

  15. de Silva, J. P.; Geoghegan, M.; Higgins, A. M.; Krausch, G.; David, M. O.; Reiter, G. Switching layer stability in a polymer bilayer by thickness variation. Phys. Rev. Lett. 2007, 98(26), 267802.

    Article  CAS  PubMed  Google Scholar 

  16. Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Gabriele, S.; Vilmin, T.; Raphael, E. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 2005, 4(10), 754–758.

    Article  CAS  PubMed  Google Scholar 

  17. Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 1992, 68(1), 75.

    Article  CAS  PubMed  Google Scholar 

  18. Reiter, G. Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 9(5), 1344–1351.

    Article  CAS  Google Scholar 

  19. Redon, C.; Brochard-Wyart, F.; Rondelez, F. Dynamics of dewetting. Phys. Rev. Lett. 1991, 66(6), 715.

    Article  CAS  PubMed  Google Scholar 

  20. Masson, J.; Green, P. F. Hole formation in thin polymer films: a two-stage process. Phys. Rev. Lett. 2002, 88(20), 205504.

    Article  CAS  PubMed  Google Scholar 

  21. Brochard-Wyart, F.; Debrégeas, G.; Fondecave, R.; Martin, P. Dewetting of supported viscoelastic polymer films: birth of rims. Macromolecules 1997, 30(4), 1211–1213.

    Article  CAS  Google Scholar 

  22. Jacobs, K. Growth of holes in liquid films with partial slippage. Langmuir 1998, 14(18), 4961–4963.

    Article  CAS  Google Scholar 

  23. Reiter, G.; Auroy, P.; Auvray, L. Instabilities of thin polymer films on layers of chemically identical grafted molecules. Macromolecules 1996, 29(6), 2150–2157.

    Article  CAS  Google Scholar 

  24. Jiang, N.; Cheung, J.; Guo, Y.; Endoh, M. K.; Koga, T.; Yuan, G.; Satija, S. K. Stability of adsorbed polystyrene nanolayers on silicon substrates. Macromol. Chem. Phys. 2017, 1700326.

    Google Scholar 

  25. Jiang, N.; Wang, J.; Di, X.; Cheung, J.; Zeng, W.; Endoh, M. K.; Satija, S. K. Nanoscale adsorbed structures as a robust approach for tailoring polymer film stability. Soft Matter 2016, 12(6), 1801–8109.

    Article  CAS  PubMed  Google Scholar 

  26. Bal, J. K.; Beuvier, T.; Unni, A. B.; Chavez Panduro, E. A.; Vignaud, G.; Delorme, N.; Gibaud, A. Stability of polymer ultrathin films (< 7 nm) made by a top-down approach. ACS Nano 2015, 9(8), 8184–8193.

    Article  CAS  PubMed  Google Scholar 

  27. Xu, L.; Yu, X. F.; Shi, T. F.; An, L. J. Investigation of the dewetting inhibition mechanism of thin polymer films. Soft Matter 2009, 5(10), 2109–2116.

    Article  CAS  Google Scholar 

  28. Glynos, E.; Frieberg, B.; Green, P. F. Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 2011, 107(11), 118303.

    Article  CAS  PubMed  Google Scholar 

  29. Glynos, E.; Chremos, A.; Frieberg, B.; Sakellariou, G.; Green, P. F. Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 2014, 47(3), 1137–1143.

    Article  CAS  Google Scholar 

  30. Granick, S.; Zhu, Y. X.; Lee, H. Slippery questions about complex fluids flowing past solids. Nat. Mater. 2003, 2(4), 221–227.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, Y.; Granick, S. Apparent slip of Newtonian fluids past adsorbed polymer layers. Macromolecules 2002, 35(12), 4658–4663.

    Article  CAS  Google Scholar 

  32. Lauga, E.; Brenner, M. P. Dynamic mechanisms for apparent slip on hydrophobic surfaces. Phys. Rev. E 2004, 70(2), 026311.

    Article  CAS  Google Scholar 

  33. Jenkel, E. Adsorption of high polymers from solution. Z. Elektrochem 1951, 55, 612–618.

    Google Scholar 

  34. Tan, H. Y.; Xu, D. H.; Wan, D.; Wang, Y. J.; Wang, L.; Zheng, J.; Liu, F.; Ma, L.; Tang, T. Melt viscosity behavior of C60 containing star polystyrene composites. Soft Matter 2013, 9(27), 6282–6290.

    Article  CAS  Google Scholar 

  35. Liu, B.; Wang, H.; Zhang, L.; Yang, G.; Liu, X.; Kim, I. A facile approach for the synthesis of cyclic poly(Nisopropylacrylamide) based on an anthracene-thiol click reaction. Polym. Chem. 2013, 4(8), 2428–2431.

    Article  CAS  Google Scholar 

  36. Xu, L.; Sharma, A.; Joo, S. W. Substrate heterogeneity induced instability and slip in polymer thin films: dewetting on silanized surfaces with variable grafting density. Macromolecules 2010, 43(18), 7759–7762.

    Article  CAS  Google Scholar 

  37. Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54(12), 5237–5247.

    Article  CAS  Google Scholar 

  38. Grest, G. S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 1986, 33(5), 3628.

    Article  CAS  Google Scholar 

  39. Sides, S. W.; Grest, G. S.; Stevens, M. J. Large-scale simulation of adhesion dynamics for end-grafted polymers. Macromolecules 2002, 35(2), 566–573.

    Article  CAS  Google Scholar 

  40. Ermak, D.; McCammon, J. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69(4), 1352–1360.

    Article  CAS  Google Scholar 

  41. Kosmas, M. K. Ideal polymer chains of various architectures at a surface. Macromolecules 1990, 23(7), 2061–2065.

    Article  CAS  Google Scholar 

  42. Reiter, G.; Akhrass, S.; Hamieh, M.; Damman, P.; Gabriele, S.; Vilmin, T.; Raphaël, E. Dewetting as an investigative tool for studying properties of thin polymer films. Eur. Phys. J. Spec. Top. 2009, 166(1), 165–172.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Ming-Ming Ding for help with Brownian dynamics simulations. This work was financially supported by the National Natural Science Foundation of China (Nos. 51473168, 21234007, 21674114, 51503048, 51573131 and 21374077) and the grant of Guizhou Education University (No. 107003001455) and the Natural Science Foundation of Guizhou Province (No. QKHJC[ 2017]1137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Xu, Tong-Fei Shi or Shi-Chun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LN., Zhang, HH., Xu, L. et al. Dewetting Kinetics of Thin Polymer Films with Different Architectures: Effect of Polymer Adsorption. Chin J Polym Sci 36, 984–990 (2018). https://doi.org/10.1007/s10118-018-2111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2111-1

Keywords

Navigation