Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 7, pp 888–896 | Cite as

Self-assembly Behavior of Symmetrical Linear ABCA Tetrablock Copolymer: A Self-consistent Field Theory Study

  • Dan Liu
  • Ying-Ying Wang
  • Ying-Chun Sun
  • Yuan-Yuan Han
  • Jie Cui
  • Wei Jiang
Article
  • 44 Downloads

Abstract

ABCA tetrablock copolymers offer new opportunities for design of materials with novel structures. Using real-space self-consistent field theory and simulation, we systematically examined the self-assembly behavior of linear ABCA tetrablock copolymers in a 2D space. The simulation was carried out under conditions of symmetrical compositions and interactions. We focus on the influence of chain length ratio of block A and interactions between block A and other blocks B and C on the self-assembly behavior of the copolymer system. The simulation results show that most of the structures self-assembled by the ABCA tetrablock copolymers are centrosymmetric, such as diblock-like lamella phase, two kinds of lamellae with beads at interface, two kinds of hierarchical lamella phase, hexagonal honeycomb-like phase, lamella phase with mixed BC and hexagonal spheres with mixed BC. Furthermore, we find that a novel noncentrosymmetric Janus spheres can be obtained when the interaction between blocks B and C is strong, whereas a noncentrosymmetric lamella phase was obtained at weak interaction between blocks B and C. Phase diagrams for the ABCA tetrablock copolymers with different interaction strength between blocks B and C are constructed by comparing free energies of candidate ordered structures. In addition, studies on the metastable behavior of the system reveal that enthalpy plays an important role in the metastable behavior of the ABCA tetrablock copolymer system. Our work can provide useful guide for structure control of such kind of tetrablock copolymers in experiments.

Keywords

Self-assembly Tetrablock copolymer Self-consistent field Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21474107). The resource provided by Computing Center of Jilin Province is gratefully acknowledged.

References

  1. 1.
    Fujikawa, S.; Koizumi, M.; Taino, A.; Okamoto, K. Fabrication and unique optical properties of two-dimensional silver nanorod arrays with nanometer gaps on a silicon substrate from a self-assembled template of diblock copolymer. Langmuir 2016, 32(47), 12504–12510.CrossRefPubMedGoogle Scholar
  2. 2.
    Higuchi, T.; Sugimori, H.; Jiang, X.; Hong, S.; Matsunaga, K.; Kaneko, T.; Abetz, V.; Takahara, A.; Jinnai, H. Morphological control of helical structures of an ABC-type triblock terpolymer by distribution control of a blending homopolymer in a block copolymer microdomain. Macromolecules 2013, 46(17), 6991–6997.CrossRefGoogle Scholar
  3. 3.
    Nunes, S. P. Block copolymer membranes for aqueous solution applications. Macromolecules 2016, 49(8), 2905–2916.CrossRefGoogle Scholar
  4. 4.
    Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290(5499), 2126–2129.CrossRefPubMedGoogle Scholar
  5. 5.
    Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2014, 47(1), 2–12.CrossRefGoogle Scholar
  6. 6.
    Ludwigs, S.; Boker, A.; Voronov, A.; Rehse, N.; Magerle, R.; Krausch, G. Self-assembly of functional nanostructures from ABC triblock copolymers. Nat. Mater. 2003, 2(11), 744–747.CrossRefPubMedGoogle Scholar
  7. 7.
    Ji, S. X.; Wan, L.; Liu, C. C.; Nealey, P. F. Directed selfassembly of block copolymers on chemical patterns: a platform for nanofabrication. Prog. Polym. Sci. 2016, 54–55, 76–127.CrossRefGoogle Scholar
  8. 8.
    Matsen, M. W. Equilibrium behavior of asymmetric ABA triblock copolymer melts. J. Chem. Phys. 2000, 113(13), 5539–5544.CrossRefGoogle Scholar
  9. 9.
    Matsen, M. W.; Schick, M. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett. 1994, 72(16), 2660–2663.CrossRefPubMedGoogle Scholar
  10. 10.
    Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers. Phys. Rev. E 2004, 69(3), 031803.CrossRefGoogle Scholar
  11. 11.
    Sun, M. Z.; Wang, P.; Qiu, F.; Tang, P.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of ABC linear triblock copolymers: Parallel real-space self-consistent-field-theory simulation. Phys. Rev. E 2008, 77(1), 016701.CrossRefGoogle Scholar
  12. 12.
    Li, W. H.; Qiu, F.; Shi, A. C. Emergence and stability of helical superstructures in ABC triblock copolymers. Macromolecules 2012, 45(1), 503–509.CrossRefGoogle Scholar
  13. 13.
    Liu, M. J.; Li, W. H.; Qiu, F.; Shi, A. C. Theoretical study of phase behavior of frustrated ABC linear triblock copolymers. Macromolecules 2012, 45(23), 9522–9530.CrossRefGoogle Scholar
  14. 14.
    Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers. J. Phys. Chem. B 2004, 108(24), 8434–8438.CrossRefGoogle Scholar
  15. 15.
    Li, W. H.; Xu, Y. C.; Zhang, G. J.; Qiu, F.; Yang, Y. L.; Shi, A. C. Real-space self-consistent mean-field theory study of ABC star triblock copolymers. J. Chem. Phys. 2010, 133(6).Google Scholar
  16. 16.
    Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. SCFT study of tiling patterns in ABC star terpolymers. Macromolecules 2010, 43(6), 2981–2989.CrossRefGoogle Scholar
  17. 17.
    Gemma, T.; Hatano, A.; Dotera, T. Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method. Macromolecules 2002, 35(8), 3225–3237.CrossRefGoogle Scholar
  18. 18.
    Hayashida, K.; Saito, N.; Arai, S.; Takano, A.; Tanaka, N.; Matsushita, Y. Hierarchical morphologies formed by ABC starshaped terpolymers. Macromolecules 2007, 40(10), 3695–3699.CrossRefGoogle Scholar
  19. 19.
    Mogi, Y.; Nomura, M.; Kotsuji, H.; Ohnishi, K.; Matsushita, Y.; Noda, I. Superlattice structures in morphologies of the ABC triblock copolymers. Macromolecules 1994, 27(23), 6755–6760.CrossRefGoogle Scholar
  20. 20.
    Jinnai, H.; Kaneko, T.; Matsunaga, K.; Abetz, C.; Abetz, V. A double helical structure formed from an amorphous, achiral ABC triblock terpolymer. Soft Matter 2009, 5(10), 2042–2046.CrossRefGoogle Scholar
  21. 21.
    Huang, H. L.; Yi, G. B.; Zu, X. H.; Zhong, B. B.; Luo, H. S. Patterning of triblock copolymer film and its application for surface-enhanced Raman scattering. Chinese J. Polym. Sci. 2017, 35(5), 623–630.CrossRefGoogle Scholar
  22. 22.
    Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 2004, 37(22), 8325–8341.CrossRefGoogle Scholar
  23. 23.
    Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Multiblock polymers: Panacea or Pandora’s box? Science 2012, 336(6080), 434–440.CrossRefPubMedGoogle Scholar
  24. 24.
    Touris, A.; Chanpuriya, S.; Hillmyer, M. A.; Bates, F. S. Synthetic strategies for the generation of ABCA’ type asymmetric tetrablock terpolymers. Polym. Chem. 2014, 5(19), 5551–5559.CrossRefGoogle Scholar
  25. 25.
    Brannan, A. K.; Bates, F. S. ABCA tetrablock copolymer vesicles. Macromolecules 2004, 37(24), 8816–8819.CrossRefGoogle Scholar
  26. 26.
    Cui, J.; Jiang, W. Structure of ABCA tetrablock copolymer vesicles and their formation in selective solvents: a Monte Carlo study. Langmuir 2011, 27(16), 10141–10147.CrossRefPubMedGoogle Scholar
  27. 27.
    Matsuo, Y.; Konno, R.; Ishizone, T.; Goseki, R.; Hirao, A. Precise synthesis of block polymers composed of three or more blocks by specially designed linking methodologies in conjunction with living anionic polymerization system. Polymers 2013, 5(3), 1012–1040.CrossRefGoogle Scholar
  28. 28.
    Hoogenboom, R.; Wiesbrock, F.; Leenen, M. A. M.; Thijs, H. M. L.; Huang, H. Y.; Fustin, C. A.; Guillet, P.; Gohy, J. F.; Schubert, U. S. Synthesis and aqueous micellization of amphiphilic tetrablock ter- and quarterpoly(2-oxazoline)s. Macromolecules 2007, 40(8), 2837–2843.CrossRefGoogle Scholar
  29. 29.
    Radlauer, M. R.; Fukuta, S.; Matta, M. E.; Hillmyer, M. A. Controlled synthesis of ABCA’ tetrablock terpolymers. Polymer 2017, 124, 60–67.CrossRefGoogle Scholar
  30. 30.
    Takano, A.; Soga, K.; Suzuki, J.; Matsushita, Y. Noncentrosymmetric structure from a tetrablock quarterpolymer of the ABCA type. Macromolecules 2003, 36(25), 9288–9291.CrossRefGoogle Scholar
  31. 31.
    Jaffer, K. M.; Wickham, R. A.; Shi, A. C. Noncentrosymmetric lamellar phase in ABCD tetrablock copolymers. Macromolecules 2004, 37(18), 7042–7050.CrossRefGoogle Scholar
  32. 32.
    Stoenescu, R.; Graff, A.; Meier, W. Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins. Macromol. Biosci. 2004, 4(10), 930–935.CrossRefPubMedGoogle Scholar
  33. 33.
    Jiang, W. B.; Ji, Y. Y.; Lang, W. C.; Li, S. B.; Wang, X. H. Surface-induced morphologies of ABC star triblock copolymer in spherical cavities. Chinese J. Polym. Sci. 2015, 33(11), 1503–1515.CrossRefGoogle Scholar
  34. 34.
    Fan, J. J.; Han, Y. Y.; Cui, J. Solvent property induced morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution: a self-consistent field simulation study. Chinese J. Polym. Sci. 2014, 32(12), 1704–1713.CrossRefGoogle Scholar
  35. 35.
    Xia, Y. D.; Chen, J. Z.; Shi, T. F.; An, L. J. Self-assembly of linear rod-coil multiblock copolymers. Chinese J. Polym. Sci. 2013, 31(9), 1242–1249.CrossRefGoogle Scholar
  36. 36.
    Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys. Rev. Lett. 1999, 83(21), 4317–4320.CrossRefGoogle Scholar
  37. 37.
    Drolet, F.; Fredrickson, G. H. Optimizing chain bridging in complex block copolymers. Macromolecules 2001, 34(15), 5317–5324.CrossRefGoogle Scholar
  38. 38.
    Press W. H.; Flannery, B. P; Teukolsky, S. A.; Vettering, W. T. Numerical recipes. Cambridge Univeristy Press, Cambridge, England. 1989.Google Scholar
  39. 39.
    He, X. H.; Liang, H. J.; Huang, L.; Pan, C. Y. Complex microstructures of Amphiphilic diblock copolymer in dilute solution. J. Phys. Chem. B 2004, 108(5), 1731–1735.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsNortheast Normal UniversityChangchunChina
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations