Chinese Journal of Polymer Science

, Volume 36, Issue 7, pp 848–858 | Cite as

Correlation of Morphology Evolution with Superior Mechanical Properties in PA6/PS/PP/SEBS Blends Compatibilized by Multi-phase Compatibilizers

  • Huanmin Li
  • Xianwei Sui
  • Xu-Ming Xie


In this study, the maleic anhydride (MAH) and styrene (St) dual monomers grafted polypropylene (PP) and poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS), i.e. PP-g-(MAH-co-St) and SEBS-g-(MAH-co-St) are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS (70/10/10/10) model quaternary blends. Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St) in the dispersed domains (about 2 μm) of the PA6/PS/PP-g-(MAH-co-St)/SEBS (70/10/10/10) quaternary blend. In contrast, inside the dispersed domains (about 1 μm) of the PA6/PS/PP/SEBS-g-(MAH-co-St) (70/10/10/10) quaternary blend, the soft SEBS-g-(MAH-co-St) encapsulates both the hard PS and PP phases and separates them. With increasing the content of the compatibilizers equally, the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St)) (70/10/10/10) quaternary blends evolves from the soft (SEBS+SEBS-g-(MAH-co-St)) encapsulating PS and partially encapsulating PP (about 1 μm), then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St) and then separated by PP-g-(MAH-co-St) inside the smaller domains (about 0.6 μm). This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers. The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain, which results in the further improved mechanical properties. Compared to the uncompatibilized blend, the blend with both 10 wt% PP-g-(MAH-co-St) and 10 wt% SEBS-g-(MAH-co-St) has the best mechanical properties with the stress at break, strain at break and impact failure energy improved significantly by 97%, 71% and 261%, respectively. There is a strong correlation between the structure and property in the blends.


Compatibilization Morphology evolution Superior mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (No. 51633003) and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (No. OIC-201601006).


  1. 1.
    Koning, C.; van Duin, M.; Pagnoulle, C.; Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998, 23(4), 707–757.CrossRefGoogle Scholar
  2. 2.
    Paul, D. R.; Bucknall, C. B. "Polymer blends", Wiley, New York, 2000.Google Scholar
  3. 6.
    Robeson, L. M. "Polymer blends: a comprehensive review", Carl Hanser Verlag, 2007.Google Scholar
  4. 4.
    Adedeji, A.; Lyu, S.; Macosko, C. W. Block copolymers in homopolymer blends: interface vs micelles. Macromolecules 2001, 34(25), 8663–8668.CrossRefGoogle Scholar
  5. 5.
    Marić, M.; Macosko, C. W. Block copolymer compatibilizers for polystyrene/poly(dimethylsiloxane) blends. J. Polym. Sci., Part B: Polym. Phys. 2002, 40(4), 346–357.CrossRefGoogle Scholar
  6. 6.
    Harrats, C.; Fayt, R.; Jérôme, R.; Blacher, S. Stabilization of a cocontinuous phase morphology by a tapered diblock or triblock copolymer in polystyrene-rich low-density polyethylene/polystyrene blends. J. Polym. Sci., Part B: Polym. Phys. 2003, 41(2), 202–216.CrossRefGoogle Scholar
  7. 7.
    Guo, R. H.; Li, J. L.; Yan, L. T.; Xie, X. M. Role of compatibilizer in multicomponent polymer mixtures under shear flow. Soft Matter 2013, 9(1), 255–260.CrossRefGoogle Scholar
  8. 8.
    Bhadane, P. A.; Tsou, A. H.; Cheng, J.; Ellul, M. D.; Favis, B. D. Enhancement in interfacial reactive compatibilization by chain mobility. Polymer 2014, 55(16), 3905–3914.CrossRefGoogle Scholar
  9. 9.
    Gao, C.; Zhang, S.; Li, X.; Zhu, S.; Jiang, Z. Synthesis of poly(ether ether ketone)-block-polyimide copolymer and its compatibilization for poly(ether ether ketone)/thermoplastic polyimide blends. Polymer 2014, 55(1), 119–125.CrossRefGoogle Scholar
  10. 10.
    Xu, Y.; Thurber, C. M.; Macosko, C. W.; Lodge, T. P.; Hillmyer, M. A. Poly(methyl methacrylate)-blockpolyethylene- block-poly(methyl methacrylate) triblock copolymers as compatibilizers for polyethylene/poly(methyl methacrylate) blends. Ind. Eng. Chem. Res. 2014, 53(12), 4718–4725.CrossRefGoogle Scholar
  11. 11.
    Parpaite, T.; Otazaghine, B.; Caro, A. S.; Taguet, A.; Sonnier, R.; Lopez-Cuesta, J. M. Janus hybrid silica/polymer nanoparticles as effective compatibilizing agents for polystyrene/polyamide-6 melted blends. Polymer 2016, 90, 34–44.CrossRefGoogle Scholar
  12. 12.
    Koriyama, H.; Oyama, H. T.; Ougizawa, T.; Inoue, T.; Weber, M.; Koch, E. Studies on the reactive polysulfone-polyamide interface: interfacial thickness and adhesion. Polymer 1999, 40(23), 6381–6393.CrossRefGoogle Scholar
  13. 13.
    Zhang, J.; Lodge, T. P.; Macosko, C. W. Interfacial morphology development during PS/PMMA reactive coupling. Macromolecules 2005, 38(15), 6586–6591.CrossRefGoogle Scholar
  14. 14.
    Harada, M.; Iida, K.; Okamoto, K.; Hayashi, H.; Hirano, K. Reactive compatibilization of biodegradable poly(lactic acid)/poly(ε-caprolactone) blends with reactive processing agents. Polym. Eng. Sci. 2008, 48(7), 1359–1368.CrossRefGoogle Scholar
  15. 15.
    Liu, G. C.; He, Y. S.; Zeng, J. B.; Li, Q. T.; Wang, Y. Z. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromolecules 2014, 15(11), 4260–4271.CrossRefPubMedGoogle Scholar
  16. 16.
    Li, X.; Kang, H.; Shen, J.; Zhang, L.; Nishi, T.; Ito, K.; Zhao, C.; Coates, P. Highly toughened polylactide with novel sliding graft copolymer by in situ reactive compatibilization, crosslinking and chain extension. Polymer 2014, 55(16), 4313–4323.CrossRefGoogle Scholar
  17. 17.
    Wang, H.; Dong, W.; Li, Y. Compatibilization of immiscible polymer blends using in situ formed janus nanomicelles by reactive blending. ACS Macro Lett. 2015, 4(12), 1398–1403.CrossRefGoogle Scholar
  18. 18.
    Thurber, C. M.; Xu, Y.; Myers, J. C.; Lodge, T. P.; Macosko, C. W. Accelerating reactive compatibilization of PE/PLA blends by an interfacially localized catalyst. ACS Macro Lett. 2015, 4(1), 30–33.CrossRefGoogle Scholar
  19. 19.
    Ojijo, V.; Ray, S. S. Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 2015, 80, 1–17.CrossRefGoogle Scholar
  20. 20.
    Todd, A. D.; McEneany, R. J.; Topolkaraev, V. A.; Macosko, C. W.; Hillmyer, M. A. Reactive compatibilization of poly(ethylene terephthalate) and high-density polyethylene using amino-telechelic polyethylene. Macromolecules 2016, 49(23), 8988–8994.CrossRefGoogle Scholar
  21. 21.
    Li, J. P.; Cassagnau, P.; Da Cruz-Boisson, F.; Mélis, F.; Alcouffe, P.; Bounor-Legaré, V. Efficient hydrosilylation reaction in polymer blending: an original approach to structure PA12/PDMS blends at multiscales. Polymer 2017, 112, 10–25.CrossRefGoogle Scholar
  22. 22.
    Zolali, A. M.; Favis, B. D. Compatibilization and toughening of co-continuous ternary blends via partially wet droplets at the interface. Polymer 2017, 114, 277–288.CrossRefGoogle Scholar
  23. 23.
    Dang, L.; Nai, X. Y.; Liu, X.; Zhu, D. H.; Dong, Y. P.; Li, W. Effects of different compatibilizing agents on the interfacial adhesion properties of polypropylene/magnesium oxysulfate whisker composites. Chinese J. Polym. Sci. 2017, 35(9), 1143–1155.CrossRefGoogle Scholar
  24. 24.
    Chanda, M.; Roy, S. K. "Plastics fabrication and recycling", Taylor and Francis, 2009.Google Scholar
  25. 25.
    Xanthos, M. Recycling of the #5 Polymer. Science 2012, 337(6095), 700–702.CrossRefPubMedGoogle Scholar
  26. 26.
    Eagan, J. M.; Xu, J.; Di Girolamo, R.; Thurber, C. M.; Macosko, C. W.; LaPointe, A. M.; Bates, F. S.; Coates, G. W. Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers. Science 2017, 355(6327), 814–816.CrossRefPubMedGoogle Scholar
  27. 27.
    Debolt, M. A.; Robertson, R. E. Impact strength and elongation-to-break of compatibilized ternary blends of polypropylene, nylon 66, and polystyrene. Polym. Eng. Sci. 2004, 44(9), 1800–1809.CrossRefGoogle Scholar
  28. 28.
    DeBolt, M. A.; Robertson, R. E. Morphology of compatibilized ternary blends of polypropylene, nylon 66, and polystyrene. Polym. Eng. Sci. 2006, 46(4), 385–398.CrossRefGoogle Scholar
  29. 29.
    Omonov, T. S.; Harrats, C.; Groeninckx, G. Co-continuous and encapsulated three phase morphologies in uncompatibilized and reactively compatibilized polyamide 6/polypropylene/polystyrene ternary blends using two reactive precursors. Polymer 2005, 46(26), 12322–12336.CrossRefGoogle Scholar
  30. 30.
    Guo, H. F.; Gvozdic, N. V.; Meier, D. J. Prediction and manipulation of the phase morphologies of multiphase polymer blends: II. quaternary systems. Polymer 1997, 38(19), 4915–4923.CrossRefGoogle Scholar
  31. 31.
    Virgilio, N.; Desjardins, P.; L’Espérance, G.; Favis, B. D. In situ measure of interfacial tensions in ternary and quaternary immiscible polymer blends demonstrating partial wetting. Macromolecules 2009, 42(19), 7518–7529.CrossRefGoogle Scholar
  32. 32.
    Virgilio, N.; Favis, B. D. Self-assembly of Janus composite droplets at the interface in quaternary immiscible polymer blends. Macromolecules 2011, 44(15), 5850–5856.CrossRefGoogle Scholar
  33. 33.
    Virgilio, N.; Sarazin, P.; Favis, B. D. Towards ultraporous poly(L-lactide) scaffolds from quaternary immiscible polymer blends. Biomaterials 2010, 31(22), 5719–5728.CrossRefPubMedGoogle Scholar
  34. 34.
    Ravati, S.; Favis, B. D. Low percolation threshold conductive device derived from a five-component polymer blend. Polymer 2010, 51(16), 3669–3684.CrossRefGoogle Scholar
  35. 35.
    Wang, J.; Reyna-Valencia, A.; Chaigneau, R.; Favis, B. D. Controlling the hierarchical structuring of conductive PEBA in ternary and quaternary blends. Ind. Eng. Chem. Res. 2016, 55(50), 12848–12859.CrossRefGoogle Scholar
  36. 36.
    Wang, D.; Xie, X. M. Novel strategy for ternary polymer blend compatibilization. Polymer 2006, 47(23), 7859–7863.CrossRefGoogle Scholar
  37. 37.
    Wang, D.; Li, Y.; Xie, X. M.; Guo, B. H. Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 2011, 52(1), 191–200.CrossRefGoogle Scholar
  38. 38.
    Li, Y.; Wang, D.; Zhang, J. M.; Xie, X. M. Compatibilization and toughening of immiscible ternary blends of polyamide 6, polypropylene (or a propylene-ethylene copolymer), and polystyrene. J. Appl. Polym. Sci. 2011, 119(3), 1652–1658.CrossRefGoogle Scholar
  39. 39.
    Li, H.; Xie, X. M. Morphology development and superior mechanical properties of PP/PA6/SEBS ternary blends compatibilized by using a highly efficient multi-phase compatibilizer. Polymer 2017, 108, 1–10.CrossRefGoogle Scholar
  40. 40.
    Li, H.; Sui, X.; Xie, X. M. High-strength and super-tough PA6/PS/PP/SEBS quaternary blends compatibilized by using a highly effective multi-phase compatibilizer: toward efficient recycling of waste plastics. Polymer 2017, 123, 240–246.CrossRefGoogle Scholar
  41. 41.
    Li, Y.; Xie, X. M. Studies on mechanism of free radical meltgrafting of multi-monomer system for maleic anhydride/styrene onto polypropylene. Chem. J. Chinese U. 2000, 21(4), 637–642.Google Scholar
  42. 42.
    Xie, X. M.; Chen, N. H.; Guo, B. H.; Li, S. Study of multimonomer melt-grafting onto polypropylene in an extruder. Polym. Int. 2000, 49(12), 1677–1683.CrossRefGoogle Scholar
  43. 43.
    Li, Y.; Xie, X. M.; Guo, B. H. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene. Polymer 2001, 42(8), 3419–3425.CrossRefGoogle Scholar
  44. 44.
    Xie, X.; Li, Y.; Zhang, J.; Yang, X. Study of melt free radical grafting of maleic anhydride and styrene onto polypropylene and its properties. Acta Polymerica Sinica (in Chinese) 2002, (1), 7–12.Google Scholar
  45. 45.
    Hobbs, S. Y.; Dekkers, M. E. J.; Watkins, V. H. Effect of interfacial forces on polymer blend morphologies. Polymer 1988, 29(9), 1598–1602.CrossRefGoogle Scholar
  46. 46.
    Wu, S. “Polymer interface and adhesion”, Marcel Dekker, New York, 1982.Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Advanced Materials (Ministry of Education), Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations