Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 563–575 | Cite as

4D Printing: History and Recent Progress

  • Jing-Jun Wu
  • Li-Mei Huang
  • Qian Zhao
  • Tao Xie


4D printing has attracted great interest since the concept was introduced in 2012. The past 5 years have witnessed rapid advances in both 4D printing processes and materials. Unlike 3D printing, 4D printing allows the printed part to change its shape and function with time in response to change in external conditions such as temperature, light, electricity, and water. In this review, we first overview the history of 4D printing and discuss its definition. We then summarize recent technological advances in 4D printing with focuses on methods, materials, and their intrinsic links. Finally, we discuss potential applications and offer perspectives for this exciting new field.


4D printing Shape memory polymer Hydrogel Multi-material structure Single-material structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Founds for Distinguished Young Scholar (No. 21625402) and the National Natural Science Founds for Youths (No. 21604070).


  1. 1.
    Hull, C. W., 1986, U.S. Pat., 5, 556, 590Google Scholar
  2. 2.
    Bower, C., Meitl, M., Gomez, D., Bonafede, S. and Kneeburg, D., 2016, U.S. Pat., 9358775Google Scholar
  3. 3.
    Tofail, S. A. M.; Koumoulos, E. P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materialstoday, in press.Google Scholar
  4. 4.
    Shirazi, S. F. S.; Gharehkhani, S.; Mehrali, M.; Yarmand, H.; Metselaar, H. S. C.; Kadri, N. A.; Osman, N. A. A. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mat. 2015, 16(3), 033502CrossRefGoogle Scholar
  5. 5.
    Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 2015, 347(6228), 1349–1352Google Scholar
  6. 6.
    Geier, B., Local Motors shows Strati, the world’s first 3D-printed car. Scholar
  7. 7.
    Simmons, D., Airbus had 1,000 parts 3D printed to meet deadline. Scholar
  8. 8.
    Tibbits, S., The emergence of “4D printing”. _printing.Google Scholar
  9. 9.
    Campbell, T.; Tibbits, S.; Garrett, B. The next wave: 4D printing-programming the material world. Frame, 2014Google Scholar
  10. 10.
    Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267–270CrossRefGoogle Scholar
  11. 11.
    Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79−120CrossRefGoogle Scholar
  12. 12.
    Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2016, 2(1), DOI: 10.1126/sciadv.1501297Google Scholar
  13. 13.
    Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 2016, 55(38), 11421–11425CrossRefGoogle Scholar
  14. 14.
    Hj, V. D. L.; Herber, S.; Olthuis, W.; Bergveld, P. Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 2003, 128(4), 325–331CrossRefGoogle Scholar
  15. 15.
    Prabaharan, M.; Mano, J. F. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci. 2006, 6(12), 991–1008CrossRefGoogle Scholar
  16. 16.
    Tokarev, I.; Minko, S. Stimuli-responsive hydrogel thin films. Soft matter 2009, 5(3), 511–524CrossRefGoogle Scholar
  17. 17.
    Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 2012, 64(3), 49–60CrossRefGoogle Scholar
  18. 18.
    Shankar, R.; Ghosh, T. K.; Spontak, R. J. Dielectric elastomers as next-generation polymeric actuators. Soft matter 2007, 3(9), 1116–1129CrossRefGoogle Scholar
  19. 19.
    Yang, Z.; Herd, G. A.; Clarke, S. M.; Tajbakhsh, A. R.; Terentjev, E. M.; Huck, W. T. Thermal and UV shape shifting of surface topography. J. Am. Chem. Soc. 2006, 128(4), 1074–1075CrossRefGoogle Scholar
  20. 20.
    Naficy, S.; Gately, R.; Gorkin, R.; Xin, H.; Spinks, G. M. 4D printing of reversible shape morphing hydrogel structures. Macromol. Mater. Eng. 2017, 302(1), DOI: 10.1002/mame.201600212Google Scholar
  21. 21.
    Raviv, D.; Zhao, W.; McKnelly, C.; Papadopoulou, A.; Kadambi, A.; Shi, B.; Hirsch, S.; Dikovsky, D.; Zyracki, M.; Olguin, C.; Raskar, R.; Tibbits, S. Active printed materials for complex self-evolving deformations. Sci. Rep. 2014, 4, DOI: 10.1038/srep07422Google Scholar
  22. 22.
    Tibbits, S.; McKnelly, C.; Olguin, C.; Dikovsky, D.; Hirsch, S. 4D printing and universal transformation. Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture, 2014, 539−548Google Scholar
  23. 23.
    Zhao, Z.; Wu, J.; Mu, X.; Chen, H.; Qi, H. J.; Fang, D. Desolvation induced origami of photocurable polymers by digit light processing. Macromol. Rapid. Commun. 2017, 38(13), DOI: 10.1002/marc.201600625Google Scholar
  24. 24.
    3D SYSTEMS, -mjp-3600-dental.Google Scholar
  25. 25.
    Stratasy, polyjet-technology.Google Scholar
  26. 26.
    Lewis, J. A.; Smay, J. E.; Stuecker, J.; Cesarano, J. Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 2010, 89(12), 3599–3609CrossRefGoogle Scholar
  27. 27.
    Ionov, L. 3D microfabrication using stimuli-responsive self-folding polymer films. Polym. Rev. 2013, 53(1), 92–107CrossRefGoogle Scholar
  28. 28.
    Ma, C.; Li, T.; Zhao, Q.; Yang, X.; Wu, J.; Luo, Y.; Xie, T. Supramolecular lego assembly towards three-dimensional multiresponsive hydrogels. Adv. Mater. 2014, 26(32), 5665–5669CrossRefGoogle Scholar
  29. 29.
    Zhao, Q.; Sun, J.; Ling, Q.; Zhou, Q. Synthesis of macroporous thermosensitive hydrogels: A novel method of controlling pore size. Langmuir 2009, 25(5), 3249–3254CrossRefGoogle Scholar
  30. 30.
    Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15(14), 1155-1158CrossRefGoogle Scholar
  31. 31.
    Ge, Q.; Qi, H. J.; Dunn, M. L. Active materials by four-dimension printing. Appl. Phys. Lett. 2013, 103(13), DOI: 10.1063/1.4819837Google Scholar
  32. 32.
    Ge, Q.; Dunn, C. K.; Qi, H. J.; Dunn, M. L. Active origami by 4D printing. Smart Mater. Struct. 2014, 23(9), DOI: 10.1088/0964-1726/23/9/094007Google Scholar
  33. 33.
    Genzer, J.; Liu, Y.; Shaw, B.; Dickey, M. In Light-induced sequential self-folding of pre-strained polymer sheets, APS Meeting 2014Google Scholar
  34. 34.
    Ying, L.; Shaw, B.; Dickey, M. D.; Genzer, J. Sequential self-folding of polymer sheets. Sci. Adv. 2017, 3(3), DOI: 10.1126/sciadv.1602417Google Scholar
  35. 35.
    Mao, Y.; Yu, K.; Isakov, M. S.; Wu, J.; Dunn, M. L.; Qi, H. J. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 2015, 5, DOI: 10.1038/srep13616Google Scholar
  36. 36.
    Ding, Z.; Yuan, C.; Peng, X.; Wang, T.; Qi, H. J.; Dunn, M. L. Direct 4D printing via active composite materials. Sci. Adv. 2017, 3(4), DOI: 10.1126/sciadv.1602890Google Scholar
  37. 37.
    Mao, Y.; Ding, Z.; Yuan, C.; Ai, S.; Isakov, M.; Wu, J.; Wang, T.; Dunn, M. L.; Qi, H. J. 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 2016, 6, DOI: 10.1038/srep24761Google Scholar
  38. 38.
    Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016, 28(22), 4449–4454CrossRefGoogle Scholar
  39. 39.
    Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Commun. 2017, 38(2), DOI: 10.1002/marc.201600628Google Scholar
  40. 40.
    Zarek, M.; Layani, M.; Eliazar, S.; Mansour, N.; Cooperstein, I.; Shukrun, E.; Szlar, A.; Cohn, D.; Magdassi, S. 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual. Phys. Prototyp. 2016, 11(4), 263–270CrossRefGoogle Scholar
  41. 41.
    Miao, S.; Zhu, W.; Castro, N. J.; Nowicki, M.; Zhou, X.; Cui, H.; Fisher, J. P.; Zhang, L. G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 2016, 6, DOI: 10.1038/srep27226Google Scholar
  42. 42.
    Yu, K.; Dunn, M. L.; Qi, H. J. Digital manufacture of shape changing components. Extreme. Mech. Lett. 2015, 4, 9–17CrossRefGoogle Scholar
  43. 43.
    Huang, L. M.; Jiang, R. Q.; Wu, J. J.; Song, J. Z.; Bai, H.; Li, B. G.; Zhao, Q.; Xie, T. Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 2017, 29(7), DOI: 10.1002/adma.201605390Google Scholar
  44. 44.
    Yang, H.; Leow, W. R.; Wang, T.; Wang, J.; Yu, J.; He, K.; Qi, D.; Wan, C.; Chen, X. 3D printed photoresponsive devices based on shape memory composites. Adv. Mater. 2017, DOI: 10.1002/adma.201701627Google Scholar
  45. 45.
    Yang, K.; Grant, J. C.; Lamey, P.; Joshi-Imre, A.; Lund, B. R.; Smaldone, R. A.; Voit, W. Diels-alder reversible thermoset 3D printing: isotropic thermoset polymers via fused filament fabrication. Adv. Funct. Mater. 2017, DOI: 10.1002/adfm.201700318Google Scholar
  46. 46.
    Wei, H.; Zhang, Q.; Yao, Y.; Liu, L.; Liu, Y.; Leng, J. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces 2017, 9(1), 876–883CrossRefGoogle Scholar
  47. 47.
    Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016, 15(4), 413–418CrossRefGoogle Scholar
  48. 48.
    Zhang, Q.; Yan, D.; Zhang, K.; Hu, G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep. 2015, 5, DOI: 10.1038/srep08936Google Scholar
  49. 49.
    Zhang, Q.; Zhang, K.; Hu, G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 2016, 6, DOI: 10.1038/srep22431Google Scholar
  50. 50.
    Zhao, Z.; Wu, J.; Mu, X.; Chen, H.; Qi, H. J.; Fang, D. Origami by frontal photopolymerization. Sci. Adv. 2017, 3(4), DOI: 10.1126/sciadv.1602326Google Scholar
  51. 51.
    Sokol, Z., The U.S. Army is investing in 4D printing, expect craziness like self-altering camo. en_us/article/yp5m8x/the-us-army-is-investing-in-4d-printing-e xpect-crazy-results.Google Scholar
  52. 52.
    Kuribayashi, K.; Tsuchiya, K.; You, Z.; Tomus, D.; Umemoto, M.; Ito, T.; Sasaki, M. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Sci. Eng. A Struct. Mater. 2006, 419(1-2), 131–137CrossRefGoogle Scholar
  53. 53.
    Wache, H. M.; Tartakowska, D. J.; Hentrich, A.; Wagner, M. H. Development of a polymer stent with shape memory effect as a drug delivery system. J. Mater. Sci. Mater. Med. 2003, 14(2), 109–112CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations