Skip to main content
Log in

Rheology of Poly(vinyl butyral) Solution Containing Fumed Silica in Correlation with Electrospinning

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheological behaviour of poly(vinyl butyral)—Mowital B 60H—(PVB) solutions dissolved in methanol and a blend of these with fumed silica nanoparticles. The preparation of the nanofibrous web and the quality of nanofibres were correlated with the rheology of the polymer solution. It was discerned that drastically intensifying shear viscosity and the elasticity of the solution exerted a negligible effect on the formation of fibres, a finding which has rarely been discussed in the literature. The morphologies and structures of the PVB/silica nanofibrous membranes were investigated by scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanangamudi, A.; Hamzah, S.; Singh, G. Synthesis of hybrid hydrophobic composite air filtration membranes for antibacterial activity and chemical detoxification with high particulate filtration efficiency (PFE). Chem. Eng. J. 2015, 260, 801–808.

    Article  CAS  Google Scholar 

  2. Khajavi, R.; Abbasipour, M.; Bahador, A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J. Appl. Polym. Sci. 2016, 133(3), 42883.

    Article  CAS  Google Scholar 

  3. Capulli, A. K.; MacQueen, L. A.; Sheehy, S. P.; Parker, K. K. Fibrous scaffolds for building hearts and heart parts. Adv. Drug Deliv. Rev. 2016, 96, 83–102.

    Article  CAS  PubMed  Google Scholar 

  4. Sas, I.; Gorga, R. E.; Joines, J. A.; Thoney, K. A. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J. Polym. Sci., Part B: Polym. Phys. 2012, 50(12), 824–845.

    Article  CAS  Google Scholar 

  5. Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Lim, T. C.; Ma, Z. "An introduction to electrospinning and nanofibers", World Scientific Publishing Co. Pte. Ltd., Singapore, 2005, p.90

    Book  Google Scholar 

  6. Deitzel, J.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42(1), 261–272.

    Article  CAS  Google Scholar 

  7. Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 2004, 45(9), 2959–2966.

    Article  CAS  Google Scholar 

  8. Han, W.; Nurwaha, D.; Li, C.; Wang, X. Free surface electrospun fibers: the combined effect of processing parameters. Polym. Eng. Sci. 2014, 54(1), 189–197.

    Article  CAS  Google Scholar 

  9. Basu, S.; Gogoi, N.; Sharma, S.; Jassal, M.; Agrawal, A. K. Role of elasticity in control of diameter of electrospun PAN nanofibers. Fib. Polym. 2013, 14(6), 950–956.

    Article  CAS  Google Scholar 

  10. Gupta, D.; Jassal, M.; Agrawal, A. K. Electrospinning of poly(vinyl alcohol)-based boger fluids to understand the role of elasticity on morphology of nanofibers. Ind. Eng. Chem. Res. 2015, 54(5), 1547–1554.

    Article  CAS  Google Scholar 

  11. Dufficy, M. K.; Geiger, M. T.; Bonino, C. A.; Khan, S. A. Electrospun ultrafine fiber composites containing fumed silica: from solution rheology to materials with tunable wetting. Langmuir 2015, 31(45), 12455–12463.

    Article  CAS  PubMed  Google Scholar 

  12. Yadav, G. D.; Yadav, A. R. Atom economical Michael addition of indole with methyl vinyl ketone over novel solid acid catalyst sulfated zirconia on silica tubes. Microporous and Mesoporous Mater. 2014, 195, 180–190.

    Article  CAS  Google Scholar 

  13. Xu, H.; Li, H.; Chang, J. Controlled drug release from a polymer matrix by patterned electrospun nanofibers with controllable hydrophobicity. J. Mater. Chem. B 2013, 1(33), 4182–4188.

    Article  CAS  Google Scholar 

  14. Chen, L. J.; Liao, J. D.; Lin, S. J.; Chuang, Y. J.; Fu, Y. S. Synthesis and characterization of PVB/silica nanofibers by electrospinning process. Polymer 2009, 50(15), 3516–3521.

    Article  CAS  Google Scholar 

  15. Fong, H.; Chun, I.; Reneker, D. H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40(16), 4585–4592.

    Article  CAS  Google Scholar 

  16. Yalcinkaya, F. Experimental study on electrospun polyvinyl butyral nanofibers using a non-solvent system. Fib. Polym. 2015, 16(12), 2544–2551.

    Article  CAS  Google Scholar 

  17. Cassagnau, P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008, 49(9), 2183–2196.

    Article  CAS  Google Scholar 

  18. Shenoy, S. L.; Bates, W. D.; Frisch, H. L; Wnek, G. E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer 2005, 46(10), 3372–3384.

    Article  CAS  Google Scholar 

  19. Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C. The role of elasticity in the formation of electrospun fibers. Polymer 2006, 47(13), 4789–4797.

    Article  CAS  Google Scholar 

  20. Regev, O.; Vandebril, S.; Zussman, E.; Clasen, C. The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 2010, 51(12), 2611–2620.

    Article  CAS  Google Scholar 

  21. Ehrenstein, G. W.; Riedel, G.; Trawiel, P. "Thermal analysis of plastic: theory and practice", Hanser Publishers, Munich, 2004, p. 368

    Book  Google Scholar 

Download references

Acknowledgments

The author (P.P.) wishes to acknowledge the Grant Agency CR for the financial support of Grant Project (No. 17-26808S). The authors (M.P. and P.S.) thank the support of the Ministry of Education, Youth and Sports of the Czech Republic—Programme NPU I (No. LO1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Peer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peer, P., Polaskova, M. & Suly, P. Rheology of Poly(vinyl butyral) Solution Containing Fumed Silica in Correlation with Electrospinning. Chin J Polym Sci 36, 742–748 (2018). https://doi.org/10.1007/s10118-018-2077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2077-z

Keywords

Navigation