Skip to main content

Advertisement

Log in

Synthetic Two-dimensional Organic Structures

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Synthetic two-dimensional (2D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2D structures bring superior properties. Although, from linear to 2D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2D materials from three respects: (1) Chemistry—different types of polymerization reactions or supramolecular assembly to construct the 2D networks were described; (2) Preparation methods—surface science, crystal engineering approaches and solution synthesis were introduced; (3) Functionalization and some early applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boott, C. E.; Nazemi, A.; Manners, I. Synthetic covalent and non-covalent 2D materials. Angew. Chem. Int. Ed. 2015, 54(47), 13876–13894

    Article  CAS  Google Scholar 

  2. Baek, K.; Hwang, I.; Roy, I.; Shetty, D.; Kim, K. Self-assembly of nanostructured materials through irreversible covalent bond formation. Acc. Chem. Res. 2015, 48(8), 2221–2229

    Article  CAS  PubMed  Google Scholar 

  3. Zhuang, X.; Mai, Y.; Wu, D.; Zhang, F.; Feng, X. Two-dimensional soft nanomaterials: a fascinating world of materials. Adv. Mater. 2015, 27(3), 403–427

    Article  CAS  PubMed  Google Scholar 

  4. Xiang, Z.; Cao, D.; Dai, L. Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polym. Chem. 2015, 6(11), 1896–1911

    Article  CAS  Google Scholar 

  5. Payamyar, P.; King, B. T.; Ottinger, H. C.; Schluter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 2016, 52(1), 18–34

    Article  CAS  Google Scholar 

  6. Rodriguez-San-Miguel, D.; Amo-Ochoa, P.; Zamora, F. MasterChem: cooking 2D-polymers. Chem. Commun. 2016, 52(22), 4113–4127

    Article  CAS  Google Scholar 

  7. Cai, S. L.; Zhang, W. G.; Zuckermann, R. N.; Li, Z. T.; Zhao, X.; Liu, Y. The organicflatland—recent advances in synthetic 2D organic layers. Adv. Mater. 2015, 27(38), 5762–5770

    Article  CAS  PubMed  Google Scholar 

  8. Lackinger, M. On-surface polymerization—a versatile synthetic route to two-dimensional polymers. Polym. Int. 2015, 64(9), 1073–1078

    Article  CAS  Google Scholar 

  9. Chen, T.; Wang, D.; Wan, L. J. Two-dimensional chiral molecular assembly on solid surfaces: formation and regulation. Natl. Sci. Rev. 2015, 2(2), 205–216

    Article  CAS  Google Scholar 

  10. Colson, J. W.; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453–465

    Article  CAS  PubMed  Google Scholar 

  11. Zang, Y.; Aoki, T.; Teraguchi, M.; Kaneko, T.; Ma, L.; Jia, H. Two-dimensional and related polymers: concepts, synthesis, and their potential application as separation membrane materials. Polym. Rev. 2015, 55, (1), 57–89

    Article  CAS  Google Scholar 

  12. Novoselov, K. S. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669

    Article  CAS  PubMed  Google Scholar 

  13. Staudinger, H. Über Polymerisation. Berichte der deutschen chemischen gesellschaft (a and b series) 1920, 53(6), 1073–1085

    Article  Google Scholar 

  14. Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 2009, 48, 1030–1069

    Article  CAS  Google Scholar 

  15. Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42(16), 6634–6654

    Article  CAS  PubMed  Google Scholar 

  16. Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 2002, 41(6), 898–952

    Article  Google Scholar 

  17. de Feyter, S.; de Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32(3), 139–150

    Article  CAS  PubMed  Google Scholar 

  18. Elemans, J. A.; Lei, S.; de Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 2009, 48(40), 7298–332

    Article  CAS  Google Scholar 

  19. Michl, J.; Magnera, T. F. Two-dimensional supramolecular chemistry with molecular tinkertoys. Proc. Nat. Acad. Sci. 2002, 99, 4788–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pawin, G.; Wong, K. L.; Kwon, K. Y.; Bartels, L. A homomolecular porous network at a Cu(111) surface. Science 2006, 313(5789), 961–962

    Article  CAS  PubMed  Google Scholar 

  21. Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424(6952), 1029–1031

    Article  CAS  PubMed  Google Scholar 

  22. Sirtl, T.; Schlögl, S.; Rastgoo-Lahrood, A.; Jelic, J.; Neogi, S.; Schmittel, M.; Heckl, W. M.; Reuter, K.; Lackinger, M. Control of intermolecular bonds by deposition rates at room temperature: hydrogen bonds versus metal coordination in trinitrile monolayers. J. Am. Chem. Soc. 2013, 135(2), 691–695

    Article  CAS  PubMed  Google Scholar 

  23. Blunt, M. O.; Russell, J. C.; Giménez-López, M. D. C.; Garrahan, J. P.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Random tiling and topological defects in a two-dimensional molecular network. Science 2008, 322(5904), 1077–1081

    Article  CAS  PubMed  Google Scholar 

  24. Shi, Z.; Lin, N. Porphyrin-based two-dimensional coordination kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 2009, 131(15), 5376–5377

    Article  CAS  PubMed  Google Scholar 

  25. Kuhne, D.; Klappenberger, F.; Decker, R.; Schlickum, U.; Brune, H.; Klyatskaya, S.; Ruben, M.; Barth, J. V. High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains. J. Am. Chem. Soc. 2009, 131(11), 3881–3883

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J.; Lin, T.; Shi, Z.; Xia, F.; Dong, L.; Liu, P. N.; Lin, N. Structural transformation of two-dimensional metal-organic coordination networks driven by intrinsic in-plane compression. J. Am. Chem. Soc. 2011, 133(46), 18760–18766

    Article  CAS  PubMed  Google Scholar 

  27. Shi, Z.; Liu, J.; Lin, T.; Xia, F.; Liu, P. N.; Lin, N. Thermodynamics and selectivity of two-dimensional metallo-supramolecular self-assembly resolved at molecular scale. J. Am. Chem. Soc. 2011, 133(16), 6150–6153

    Article  CAS  PubMed  Google Scholar 

  28. Shi, Z.; Lin, N. Structural and chemical control in assembly of multicomponent metal-organic coordination networks on a surface. J. Am. Chem. Soc. 2010, 132(31), 10756–10761

    Article  CAS  PubMed  Google Scholar 

  29. Adisoejoso, J.; Li, Y.; Liu, J.; Liu, P. N.; Lin, N. Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers. J. Am. Chem. Soc. 2012, 134(45), 18526–18529

    Article  CAS  PubMed  Google Scholar 

  30. Walch, H.; Dienstmaier, J.; Eder, G.; Gutzler, R.; Schlögl, S.; Sirtl, T.; Das, K.; Schmittel, M.; Lackinger, M. Extended two-dimensional metal-organic frameworks based on thiolate-copper coordination bonds. J. Am. Chem. Soc. 2011, 133(20), 7909–7915

    Article  CAS  PubMed  Google Scholar 

  31. Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H.; Barth, J. V. Metal-organic honeycomb nanomeshes with tunable cavity size. Nano lett. 2007, 7(12), 3813–3817

    Article  CAS  PubMed  Google Scholar 

  32. Kley, C. S.; Cechal, J.; Kumagai, T.; Schramm, F.; Ruben, M.; Stepanow, S.; Kern, K. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. J. Am. Chem. Soc. 2012, 134(14), 6072–6075

    Article  CAS  PubMed  Google Scholar 

  33. Lei, S.; Tahara, K.; de Schryver, F. C.; van der Auweraer, M.; Tobe, Y.; de Feyter, S. One building block, two different supramolecular surface-confined patterns: concentration in control at the solid-liquid interface. Angew. Chem. Int. Ed. 2008, 47(16), 2964–2968

    Article  CAS  Google Scholar 

  34. Furukawa, S.; Uji-i, H.; Tahara, K.; Ichikawa, T.; Sonoda, M.; de Schryver, F. C.; Tobe, Y.; De Feyter, S. Molecular geometry directed kagomé and honeycomb networks: toward tow-dimensional crystal engineering. J. Am. Chem. Soc. 2006, 128(11), 3502–3503

    Article  CAS  PubMed  Google Scholar 

  35. Berner, S.; de Wild, M.; Ramoino, L.; Ivan, S.; Baratoff, A.; Güntherodt, H. J.; Suzuki, H.; Schlettwein, D.; Jung, T. A. Adsorption and two-dimensional phases of a large polar molecule: sub-phthalocyanine on Ag (111). Phys. Rev. B 2003, 68(11), 115410

    Article  CAS  Google Scholar 

  36. Kley, C. S. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. J. Am. Chem. Soc. 2012, 134, 6072–6075

    Article  CAS  PubMed  Google Scholar 

  37. Zwaneveld, N. A. A.; Pawlak, R.; Abel, M.; Catalin, D.; Gigmes, D.; Bertin, D.; Porte, L. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 2008, 130(21), 6678–6679

    Article  CAS  PubMed  Google Scholar 

  38. Dienstmaier, J. F.; Medina, D. D.; Dogru, M.; Knochel, P.; Bein, T.; Heckl, W. M.; Lackinger, M. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 2012, 6(8), 7234–7242

    Article  CAS  PubMed  Google Scholar 

  39. Lafferentz, L. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 2012, 4, 215–220

    Article  CAS  PubMed  Google Scholar 

  40. Bieri, M.; Treier, M.; Cai, J.; Ait-Mansour, K.; Ruffieux, P.; Groning, O.; Groning, P.; Kastler, M.; Rieger, R.; Feng, X.; Mullen, K.; Fasel, R. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 2009, 45, 6919–6921

    Article  CAS  Google Scholar 

  41. Blunt, M. O.; Russell, J. C.; Champness, N. R.; Beton, P. H. Templating molecular adsorption using a covalent organic framework. Chem. Commun. 2010, 46(38), 7157–7159

    Article  CAS  Google Scholar 

  42. Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M.; Müllen, K.; Fasel, R. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 2010, 132(46), 16669–16676

    Article  CAS  PubMed  Google Scholar 

  43. Gutzler, R.; Walch, H.; Eder, G.; Kloft, S.; Heckl, W. M.; Lackinger, M. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 2009, 29, 4456–4458

    Article  CAS  Google Scholar 

  44. Cardenas, L.; Gutzler, R.; Lipton-Duffin, J.; Fu, C.; Brusso, J. L.; Dinca, L. E.; Vondracek, M.; Fagot-Revurat, Y.; Malterre, D.; Rosei, F.; Perepichka, D. F. Synthesis and electronic structure of a two dimensional [small pi]-conjugated polythiophene. Chem. Sci. 2013, 4(8), 3263–3268

    Article  CAS  Google Scholar 

  45. Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Strunskus, T.; Wöll, C.; Dahlbom, M.; Hammer, B.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 2007, 46(48), 9227–9230

    Article  CAS  Google Scholar 

  46. Weigelt, S.; Busse, C.; Bombis, C.; Knudsen, M. M.; Gothelf, K. V.; Lægsgaard, E.; Besenbacher, F.; Linderoth, T. R. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 2008, 47(23), 4406–4410

    Article  CAS  Google Scholar 

  47. Marele, A. C.; Mas-Balleste, R.; Terracciano, L.; Rodriguez-Fernandez, J.; Berlanga, I.; Alexandre, S. S.; Otero, R.; Gallego, J. M.; Zamora, F.; Gomez-Rodriguez, J. M. Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 2012, 48(54), 6779–6781

    Article  CAS  Google Scholar 

  48. Schmitz, C. H.; Ikonomov, J.; Sokolowski, M. Two-dimensional polyamide networks with a broad pore size distribution on the Ag(111) surface. J. Phys. Chem. C 2011, 115(15), 7270–7278

    Article  CAS  Google Scholar 

  49. Treier, M.; Richardson, N. V.; Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 2008, 130(43), 14054–14055

    Article  CAS  PubMed  Google Scholar 

  50. Treier, M.; Fasel, R.; Champness, N. R.; Argent, S.; Richardson, N. V. Molecular imaging of polyimide formation. Phys. Chem. Chem. Phys. 2009, 11(8), 1209–1214

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; Diller, K.; Fischer, S.; Papageorgiou, A. C.; Allegretti, F.; Björk, J.; Klyatskaya, S.; Klappenberger, F.; Ruben, M.; Barth, J. V. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 2012, 3, DOI: 10.1038/ncomms2291

  52. Gao, H. Y.; Wagner, H.; Zhong, D.; Franke, J. H.; Studer, A.; Fuchs, H. Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. 2013, 52(14), 4024–4028

    Article  CAS  Google Scholar 

  53. Eichhorn, J.; Heckl, W. M.; Lackinger, M. On-surface polymerization of 1,4-diethynylbenzene on Cu(111). Chem. Commun. 2013, 49(28), 2900–2902

    Article  CAS  Google Scholar 

  54. Díaz Arado, O.; Mönig, H.; Wagner, H.; Franke, J. H.; Langewisch, G.; Held, P. A.; Studer, A.; Fuchs, H. On-surface azide-alkyne cycloaddition on Au(111). ACS Nano 2013, 7(10), 8509–8515

    Article  CAS  PubMed  Google Scholar 

  55. Schlogl, S.; Sirtl, T.; Eichhorn, J.; Heckl, W. M.; Lackinger, M. Synthesis of two-dimensional phenylene-boroxine networks through in vacuo condensation and on-surface radical addition. Chem. Commun. 2011, 47(45), 12355–12357

    Article  CAS  Google Scholar 

  56. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310(5751), 1166

    Article  CAS  PubMed  Google Scholar 

  57. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42(2), 548–568

    Article  CAS  PubMed  Google Scholar 

  58. Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41(18), 6010–6022

    Article  CAS  PubMed  Google Scholar 

  59. Jin, Y.; Hu, Y.; Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 2017, 1, DOI: 10.1038/s41570-017-0056

  60. Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955

    Article  CAS  PubMed  Google Scholar 

  61. Berlanga, I.; Mas-Ballesté, R.; Zamora, F. Tuning delamination of layered covalent organic frameworks through structural design. Chem. Commun. 2012, 48, 7976–7978

    Article  CAS  Google Scholar 

  62. Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135(47), 17853–17861

    Article  CAS  PubMed  Google Scholar 

  63. Yang, S.; Bruller, S.; Wu, Z. S.; Liu, Z.; Parvez, K.; Dong, R.; Richard, F.; Samori, P.; Feng, X.; Mullen, K. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J. Am. Chem. Soc. 2015, 137(43), 13927–13932

    Article  CAS  PubMed  Google Scholar 

  64. Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50(47), 11093–7

    Article  CAS  Google Scholar 

  65. Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Delamination of layered covalent organic frameworks. Small 2011, 7, 1207–1211

    Article  CAS  PubMed  Google Scholar 

  66. Colson, J. W.; Mann, J. A.; DeBlase, C. R.; Dichtel, W. R. Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene. J. Polym. Sci., Part A: Polym. Chem. 2015, 53(2), 378–384

    Article  CAS  Google Scholar 

  67. Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332(6026), 228–231

    Article  CAS  PubMed  Google Scholar 

  68. Tanoue, R.; Higuchi, R.; Enoki, N.; Miyasato, Y.; Uemura, S.; Kimizuka, N.; Stieg, A. Z.; Gimzewski, J. K.; Kunitake, M. Thermodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution. ACS Nano 2011, 5(5), 3923–3929

    Article  CAS  PubMed  Google Scholar 

  69. Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling. ACS Nano 2013, 7(9), 8066–8073

    Article  CAS  PubMed  Google Scholar 

  70. Xu, L.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S.; Liu, Z. F. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew. Chem. Int. Ed. 2014, 53(36), 9564–9568

    Article  CAS  Google Scholar 

  71. Yue, J. Y.; Liu, X. H.; Sun, B.; Wang, D. The on-surface synthesis of imine-based covalent organic frameworks with non-aromatic linkage. Chem. Commun. 2015, 51(76), 14318–14321

    Article  CAS  Google Scholar 

  72. Guan, C. Z.; Wang, D.; Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 2012, 48, 2943–2945

    Article  CAS  Google Scholar 

  73. Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135(28), 10470–10474

    Article  CAS  PubMed  Google Scholar 

  74. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46(19), 3256–3258

    Article  CAS  Google Scholar 

  75. Wang, S.; Yi, L.; Halpert, J. E.; Lai, X.; Liu, Y.; Cao, H.; Yu, R.; Wang, D.; Li, Y. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small 2012, 8(2), 265–271

    Article  CAS  PubMed  Google Scholar 

  76. Yang, N.; Liu, Y.; Wen, H.; Tang, Z.; Zhao, H.; Li, Y.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: from theory to experiment. ACS Nano 2013, 7(2), 1504–1512

    Article  CAS  PubMed  Google Scholar 

  77. Du, H.; Deng, Z.; Lü, Z.; Yin, Y.; Yu, L.; Wu, H.; Chen, Z.; Zou, Y.; Wang, Y.; Liu, H.; Li, Y. The effect of graphdiyne doping on the performance of polymer solar cells. Synth. Met. 2011, 161(19–20), 2055–2057

    Article  CAS  Google Scholar 

  78. Zhang, S. L.; Du, H. P.; He, J. J.; Huang, C. S.; Liu, H. B.; Cui, G. L.; Li, Y. L. Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 8, (13)8467–8473

    Article  CAS  PubMed  Google Scholar 

  79. Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B.; Li, Y. L. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 2016, 8(8), 5366–5375

    Article  CAS  PubMed  Google Scholar 

  80. Du, H. P.; Yang, H.; Huang, C. S.; He, J. J.; Liu, H. B.; Li, Y. L. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy 2016, 22, 615–622

    Article  CAS  Google Scholar 

  81. Zhang, S. L.; Liu, H. B.; Huang, C. S.; Cui, G. L.; Li, Y. L. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 2015, 51(10), 1834–1837

    Article  CAS  Google Scholar 

  82. Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. T.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481–489

    Article  CAS  Google Scholar 

  83. Bauer, T.; Zheng, Z.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 2011, 50(34), 7879–7884

    Article  CAS  Google Scholar 

  84. Zheng, Z.; Ruiz-Vargas, C. S.; Bauer, T.; Rossi, A.; Payamyar, P.; Schütz, A.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Square-micrometer-sized, free-standing organometallic sheets and their square-centimeter-sized multilayers on solid substrates. Macromol. Rapid. Commun. 2013, 34(21), 1670–1680

    Article  CAS  PubMed  Google Scholar 

  85. Zheng, Z.; Opilik, L.; Schiffmann, F.; Liu, W.; Bergamini, G.; Ceroni, P.; Lee, L. T.; Schütz, A.; Sakamoto, J.; Zenobi, R.; VandeVondele, J.; Schlüter, A. D. Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets. J. Am. Chem. Soc. 2014, 136(16), 6103–6110

    Article  CAS  PubMed  Google Scholar 

  86. Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J. H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; Nishihara, H. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135(7), 2462–2465

    Article  CAS  PubMed  Google Scholar 

  87. Kambe, T.; Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.; Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu, F.; Nishihara, H. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 2014, 136(41), 14357–14360

    Article  CAS  PubMed  Google Scholar 

  88. Dong, R.; Pfeffermann, M.; Liang, H.; Zheng, Z.; Zhu, X.; Zhang, J.; Feng, X. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2015, 54(41), 12058–12063

    Article  CAS  Google Scholar 

  89. Sakamoto, R.; Hoshiko, K.; Liu, Q.; Yagi, T.; Nagayama, T.; Kusaka, S.; Tsuchiya, M.; Kitagawa, Y.; Wong, W.; Nishihara, H. A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat. Commun. 2015, 6, DOI: 10.1038/ncomms7713

  90. Motoyama, S.; Makiura, R.; Sakata, O.; Kitagawa, H. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets. J. Am. Chem. Soc. 2011, 133(15), 5640–5643

    Article  CAS  PubMed  Google Scholar 

  91. Chen, Y.; Li, M.; Payamyar, P.; Zheng, Z.; Sakamoto, J.; Schlüter, A. D. Room temperature synthesis of a covalent monolayer sheet at air/water interface using a shape-persistent photoreactive amphiphilic monomer. ACS Macro Lett. 2014, 3(2), 153–158

    Article  CAS  Google Scholar 

  92. Payamyar, P.; Kaja, K.; Ruiz-Vargas, C.; Stemmer, A.; Murray, D. J.; Johnson, C. J.; King, B. T.; Schiffmann, F.; VandeVondele, J.; Renn, A.; Götzinger, S.; Ceroni, P.; Schütz, A.; Lee, L. T.; Zheng, Z.; Sakamoto, J.; Schlüter, A. D. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation. Adv. Mater. 2014, 26(13), 2052–2058

    Article  CAS  PubMed  Google Scholar 

  93. Murray, D. J.; Patterson, D. D.; Payamyar, P.; Bhola, R.; Song, W.; Lackinger, M.; Schlüter, A. D.; King, B. T. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 2015, 137(10), 3450–3453

    Article  CAS  PubMed  Google Scholar 

  94. Dai, W.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.; Schlüter, A. D.; Zhang, W. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. Int. Ed. 2016, 55(1), 213–217

    Article  CAS  Google Scholar 

  95. Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; Kaiser, U.; Fery, A.; Zheng, Z. K.; Feng, X. L. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, DOI: 10.1038/ncomms13461

    Google Scholar 

  96. Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139(8), 3145–3152

    Article  CAS  PubMed  Google Scholar 

  97. Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal0organic framework. Nat. Mater. 2010, 9(7), 565–571

    Article  CAS  PubMed  Google Scholar 

  98. Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14(1), 48–55

    Article  CAS  PubMed  Google Scholar 

  99. Hu, M.; Ishihara, S.; Yamauchi, Y. Bottom-up synthesis of monodispersed single-crystalline cyano-bridged coordination polymer nanoflakes. Angew. Chem. Int. Ed. 2013, 52(4), 1235–1239

    Article  CAS  Google Scholar 

  100. Netzer, N. L.; Dai, F. R.; Wang, Z.; Jiang, C. pH-Modulated molecular assemblies and surface properties of metal-organic supercontainers at the air-water interface. Angew. Chem. Int. Ed. 2014, 53(41), 10965–10969

    Article  CAS  Google Scholar 

  101. Xu, G.; Yamada, T.; Otsubo, K.; Sakaida, S.; Kitagawa, H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 2012, 134(40), 16524–16527

    Article  CAS  PubMed  Google Scholar 

  102. Makiura, R.; Konovalov, O. Interfacial growth of large-area single-layer metal-organic framework nanosheets. Sci. Rep. 2013, 3, DOI: 10.1038/srep02506

  103. Pfeffermann, M.; Dong, R.; Graf, R.; Zajaczkowski, W.; Gorelik, T.; Pisula, W.; Narita, A.; Mullen, K.; Feng, X. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 2015, 137(45), 14525–14532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kory, M. J.; Bergeler, M.; Reiher, M.; Schlüter, A. D. Facile synthesis and theoretical conformation analysis of a triazine-based double-decker rotor molecule with three anthracene blades. Chem. Eur. J. 2014, 20, 6934–6938

    Article  CAS  PubMed  Google Scholar 

  105. Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Götzinger, S.; Schlüter, A. D.; Sakamoto, J. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 2012, 4(4), 287–291

    Article  CAS  PubMed  Google Scholar 

  106. Kory, M. J.; Worle, M.; Weber, T.; Payamyar, P.; van de Poll, S. W.; Dshemuchadse, J.; Trapp, N.; Schluter, A. D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 2014, 6(9), 779–784

    Article  CAS  PubMed  Google Scholar 

  107. Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 2014, 6(9), 774–778

    Article  CAS  PubMed  Google Scholar 

  108. Bhola, R.; Payamyar, P.; Murray, D. J.; Kumar, B.; Teator, A. J.; Schmidt, M. U.; Hammer, S. M.; Saha, A.; Sakamoto, J.; Schluter, A. D.; King, B. T. A two-dimensional polymer from the anthracene dimer and triptycene motifs. J. Am. Chem. Soc. 2013, 135(38), 14134–14141

    Article  CAS  PubMed  Google Scholar 

  109. Lange, R. Z.; Hofer, G.; Weber, T.; Schlüter, A. D. A two-dimensional polymer synthesized through topochemical [2 + 2]-cycloaddition on the multigram scale. J. Am. Chem. Soc. 2017, 139(5), 2053–2059

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, K. D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C. H.; Zhou, T. Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z. T. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J. Am. Chem. Soc. 2013, 135(47), 17913–17918

    Article  CAS  PubMed  Google Scholar 

  111. Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T.; Long, L. S.; Sun, J. L.; Lin, W. B. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem. Int. Ed. 2016, 55(16), 4962–4966

    Article  CAS  Google Scholar 

  112. Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H.; Park, C. G.; Sung, B. J.; Kim, K. Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in aolution. J. Am. Chem. Soc. 2013, 135(17), 6523–6528

    Article  CAS  PubMed  Google Scholar 

  113. Zhou, T. Y.; Lin, F.; Li, Z. T.; Zhao, X. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules 2013, 46(19), 7745–7752

    Article  CAS  Google Scholar 

  114. Kim, J.; Baek, K.; Shetty, D.; Selvapalam, N.; Yun, G.; Kim, N. H.; Ko, Y. H.; Park, K. M.; Hwang, I.; Kim, K. Reversible morphological transformation between polymer nanocapsules and thin films through dynamic covalent self-assembly. Angew. Chem. Int. Ed. 2015, 127(9), 2731–2735

    Article  Google Scholar 

  115. Calik, M.; Sick, T.; Dogru, M.; Döblinger, M.; Datz, S.; Budde, H.; Hartschuh, A.; Auras, F.; Bein, T. From highly crystalline to outer surface-functionalized covalent organic frameworks—a modulation approach. J. Am. Chem. Soc. 2015, 138(4), 1234–1239

    Article  PubMed Central  CAS  Google Scholar 

  116. Zhao, Y.; Bernitzky, R. H. M.; Kory, M. J.; Hofer, G.; Hofkens, J.; Schlüter, A. D. Decorating the edges of a 2D polymer with a fluorescence label. J. Am. Chem. Soc. 2016, 138(28), 8976–8981.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21604046), the National Young Thousand Talents Program, Shandong Provincial Natural Science Foundation, China (No. ZR2016XJ004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Bo Li or Ying-Jie Zhao.

Additional information

Invited Review

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Kan, XN., Wu, CY. et al. Synthetic Two-dimensional Organic Structures. Chin J Polym Sci 36, 425–444 (2018). https://doi.org/10.1007/s10118-018-2070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2070-6

Keywords

Navigation