Synthesis of Novel Scolopendra-type Polydodecyloxybenzoyl[1,5]-diazocine as New Material for Optical Sensor

Article
  • 3 Downloads

Abstract

A new scolopendra-type polymer of polydodecyloxybenzoyl[1,5]-diazocine (PDBD) was designed and prepared using 2,5-bis(4-(dodecyloxy)-benzoyl)terephthaloyl azide with trifluoroacetic acid (TFA) via one-pot reaction in good yields. The structure of polymer was characterized using 1H-NMR, 13C-NMR and MALDI-TOF spectra. The polymer PDBD exhibits good thermal stability as measured by TGA and DSC, and can be dissolved well in common organic solvents such as chloroform and tetrahydrofuran. In addition, UV-Vis spectral studies indicate that the polymer PDBD shows unique optical property changes (protonation/deprotonation) in the different trifluoroacetic acid environments. The new polymer is expected to be utilized as an optical functional material for fabricating optical sensors in environmental and biological fields.

Keywords

Diazocine Scolopendra-type polymer Trifluoroacetic acid UV-Vis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21404066) and the Qingdao Independent Innovation Found (No. 15-9-1-16-jch).

Supplementary material

10118_2018_2062_MOESM1_ESM.pdf (824 kb)
Synthesis of Novel Scolopendra-type Polydodecyloxybenzoyl[1,5]-diazocine as New Material for Optical Sensor

References

  1. 1.
    Sondheimer, A. Zur kenntniss eines körpers mit achtgliedrigem ringe. Chem. Ber. 1896, 29, 1272–1275.CrossRefGoogle Scholar
  2. 2.
    Suga, T.; Wi, S.; Long, T. E. Synthesis of diazocine-containing poly(arylene ether sulfone)s for tailored mechanical and electrochemical performance. Macromolecules 2009, 42(5), 1526–1532.CrossRefGoogle Scholar
  3. 3.
    Yoshida, S.; Hay, A. S. Synthesis of all-aromatic phthalazinonecontaining polymers by a novel N-C coupling reaction. Macromolecules 1997, 30(8), 2254–2261.CrossRefGoogle Scholar
  4. 4.
    Eisch, J. J.; Liu, W.; Zhu, L.; Rheingold, A. L. Facile rearrangement of the 6,11-diphenyldibenzo[b,f][1,4]diazocine skeleton into a substituted 2-(2-aminophenyl)-1,3-diphenylisoindole via anomalous carbo-lithiation or hydrolithiation: corroboration of operative SET processes. Eur. J. Org. Chem. 2015, 33, 7384–7374.CrossRefGoogle Scholar
  5. 5.
    Bovenkerk, M.; Esser, B. Synthesis of isoindoles by one-electron reductions of dibenzo[1,4]diazocines. Eur. J. Org. Chem. 2015, 4, 775–785.CrossRefGoogle Scholar
  6. 6.
    Wang, X.; Li, J.; Zhao, N.; Wan, X. A rapid and efficient access to diaryldibenzo[b,f][1,5]diazocines. Org. Lett. 2011, 13(4), 709–711.CrossRefGoogle Scholar
  7. 7.
    Zhao, N.; Qiu, L.; Wang, X.; Li, J.; Jiang, Y.; Wan, X. Trifluoroacetic acid catalyzed dibenzodiazocine synthesis: optimization and mechanism study. Tetrahedron 2012, 68(47), 9665–9671.CrossRefGoogle Scholar
  8. 8.
    Hoppin, C.; Bates, R. B.; Contreras, C. G.; Somogyi, A.; Streeter, M. J.; Hall, H. K. Poly(dibenzodiazocine)s: analysis of low molecular weight fractions by MALDI-TOF MS. Polym. Bull. 2009, 63(4), 509–515.CrossRefGoogle Scholar
  9. 9.
    Li, J.; Wan, X. Synthesis of novel polydiazocine for electroactive materials based on diazocine. J. Polym. Sci., Part A: Polym. Chem. 2013, 52(21), 4694–4701.Google Scholar
  10. 10.
    Lee, M. E.; Armani, A. M. Flexible UV exposure sensor based on UV responsive polymer. ACS Sens. 2016, 1, 1251–1255.CrossRefGoogle Scholar
  11. 11.
    Shi, W.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Optical pH sensor with rapid response based on a fluorescein-intercalated layered double hydroxide. Adv. Funct. Mater. 2010, 20, 3856–3863.CrossRefGoogle Scholar
  12. 12.
    Parola, S.; Julián-López, B.; Carlos, L. D.; Sanchez, C. Optical properties of hybrid organic-inorganic materials and their applications. Adv. Funct. Mater. 2016, 26, 6506–6544.CrossRefGoogle Scholar
  13. 13.
    Wang, Q.; Xiong, L.; Zhu, F.; Yang, L.; Chang, G. High performance poly(N-aryleneindole ether) containing pyridine units as a novel acid response fluorescent detector. Polym. Int. 2016, 65, 841–844.CrossRefGoogle Scholar
  14. 14.
    Borchert, N. B.; Ponomarev, G. V.; Kerry, J. P.; Papkovsky, D. B. O2/pH multisensor based on one phosphorescent. Anal. Chem. 2011, 83(1), 18–22.CrossRefGoogle Scholar
  15. 15.
    Larisa, F.; Cormac, F.; Emer, L.; Thomas, P.; O’Connor, N. E.; Brian, C. Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on polyaniline with colorimetric imaging techniques. Lab. Chip. 2013, 13, 1079–1085.CrossRefGoogle Scholar
  16. 16.
    Yuya, E.; Hayashida, R.; Anzai, J. I. Multilayered assemblies composed of brilliant yellow and poly(allylamine)for an optical pH sensor. Anal. Sci. 2006, 22, 1117–1119.CrossRefGoogle Scholar
  17. 17.
    Werner, T.; Huber, C.; Heinl, S.; Kollmannsberger, M.; Daub, J.; Wolfbeis, O. S. Novel optical pH-sensor based on a boradiaza-indacene derivative. Fresenius J. Anal. Chem. 1997, 359, 150–154.CrossRefGoogle Scholar
  18. 18.
    Dorota, W.; Tobias, A.; Colette, M. Optical chemical pH sensors. Anal. Chem. 2014, 86, 15–29.CrossRefGoogle Scholar
  19. 19.
    Abo-Bakr, A. M.; Hassan, M. A.; Temirek, H. H.; Mosallam, A. M. Synthesis of some new heterocyclic nitrogen compounds starting from pyromellitic dianhydride. Orient. J. Chem. 2012, 28(4), 1567–1578.CrossRefGoogle Scholar
  20. 20.
    Tsioris, K.; Tilburey, G. E.; Murphy, A. R.; Domachuk, P.; Kaplan, D. L.; Omenetto, F. G. Functionalized-silk-based active optofluidic devices. Adv. Funct. Mater. 2010, 20, 1083–1089.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdaoChina
  2. 2.Qingdao institute of Bioprocess TechnologyChinese Academy of ScienceQingdaoChina

Personalised recommendations