Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 6, pp 756–764 | Cite as

Isothermal Crystallization Kinetics and Crystalline Morphologies of Poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) Copolymers

Article
  • 23 Downloads

Abstract

In this study, the isothermal crystallization kinetics and crystalline morphology of poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) (PBAC), which refers to a copolyester containing a non-planar ring structure, were investigated by differential scanning calorimetry and polarized optical microscopy, and compared with those of neat poly(butylene 1,4-cyclohexanedicarboxylate) (PBC). The results indicate that the introduction of butylene adipate (BA) unit into PBAC did not change the intrinsical crystallization mechanism. But, the crystallization rate and ability, and equilibrium melting temperature of PBAC copolymers were reduced. All PBC and PBAC copolymers could only form high density of nucleation from melt at given supercooling, while no Maltese cross or ring-banded spherulites could be observed. PBAC copolymers with a high amount of BA unit became amorphous after quenching with liquid nitrogen from melt, while PBC and PBAC copolymers with a low amount of BA unit could still form a large amount of nuclei under the same treatment.

Keywords

Poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) Isothermal crystallization kinetics Crystalline morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51503217), Zhejiang Province Public Welfare Project (No. 2017C31081), the Open Project Program of MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University (No. 2016MSF001), and Youth Innovation Promotion Association CAS (No. 2017339).

Supplementary material

10118_2018_2051_MOESM1_ESM.pdf (361 kb)
Isothermal Crystallization Kinetics and Crystalline Morphologies of Poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) Copolymers

References

  1. 1.
    Tserki, V.; Matzinos, P.; Pavlidou, E.; Vachliotis, D.; Panayiotou, C. Biodegradable aliphatic polyesters. part I. properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym. Degrad. Stab. 2006, 91, 367–376.CrossRefGoogle Scholar
  2. 2.
    Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate). Biomacromolecules 2004, 5, 371–378.CrossRefGoogle Scholar
  3. 3.
    Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 2010, 5(11), 1149–1163.CrossRefGoogle Scholar
  4. 4.
    Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001, 2(2), 605–613.CrossRefGoogle Scholar
  5. 5.
    Kint, D.; Munoz-Guerra, S. A review on the potential biodegradability of poly(ethylene terephthalate). Polym. Int. 1999, 48(5), 346–352.CrossRefGoogle Scholar
  6. 6.
    Stein, R. S.; Misra, A. Morphological studies on polybutylene terephthalate. J. Polym. Sci. Polym. Phys. Ed. 1980, 18(2), 327–342.CrossRefGoogle Scholar
  7. 7.
    Herrera, R.; Franco, L.; Rodríguez-Galán, A.; Puiggalí, J. Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J. Polym. Sci., Part A: Polym. Chem. 2002, 40(23), 4141–4157.CrossRefGoogle Scholar
  8. 8.
    Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T. Structures of two crystalline forms of poly(buty1ene terephthalate) and reversible transition between them by mechanical deformation. Macromolecules 1975, 9, 266–273.CrossRefGoogle Scholar
  9. 9.
    Kai, W.; Zhu, B.; He, Y.; Inoue, Y. Crystallization of poly(butylene adipate) in the presence of nucleating agents. J. Polym. Sci., Part B: Polym. Phys. 2005, 43(17), 2340–2351.CrossRefGoogle Scholar
  10. 10.
    Yang, J.; Pan, P.; Dong, T.; Inoue, Y. Crystallization kinetics and crystalline structure of biodegradable poly(ethylene adipate). Polymer 2010, 51(3), 807–815.CrossRefGoogle Scholar
  11. 11.
    Vasanthan, N.; Ozkaya, S.; Yaman, M. Morphological and conformational changes of poly(trimethylene terephthalate) during isothermal melt crystallization. J. Phys. Chem. B 2010, 114, 13069–13075.CrossRefGoogle Scholar
  12. 12.
    Yang, J.; Pan, P.; Hua, L.; Xie, Y.; Dong, T.; Zhu, B.; Inoue, Y.; Feng, X. Fractionated crystallization, polymorphic crystalline structure, and spherulite morphology of poly(butylene adipate) in its miscible blend with poly(butylene succinate). Polymer 2011, 52(15), 3460–3468.CrossRefGoogle Scholar
  13. 13.
    Chen, Y. A.; Wu, T. M. Crystallization kinetics of poly(1,4-butylene adipate) with stereocomplexed poly(lactic acid) serving as a nucleation agent. Ind. Eng. Chem. Res. 2014, 53, 16689–16695.CrossRefGoogle Scholar
  14. 14.
    Milani, A.; Galimberti, D. Polymorphism of poly(butylene terephthalate) investigated by means of periodic density functional theory calculations. Macromolecules 2014, 47(3), 1046–1052.CrossRefGoogle Scholar
  15. 15.
    Androsch, R.; Rhoades, A. M.; Stolte, I.; Schick, C. Density of heterogeneous and homogeneous crystal nuclei in poly(butylene terephthalate). Eur. Polym. J. 2015, 66, 180–189.CrossRefGoogle Scholar
  16. 16.
    Cui, Z.; Qiu, Z. Thermal properties and crystallization kinetics of poly(butylene suberate). Polymer 2015, 67, 12–19.CrossRefGoogle Scholar
  17. 17.
    Park, S. S.; Chae, S. H.; Im, S. S. Transesterification and crystallization behavior of poly(butylene succinate)/poly(butylene terephthalate) block copolymers. J. Polym. Sci., Part A: Polym. Chem. 1998, 36(1), 147–156.CrossRefGoogle Scholar
  18. 18.
    Nikolic, M. S.; Djonlagic, J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym. Degrad. Stab. 2001, 74, 263–270.CrossRefGoogle Scholar
  19. 19.
    Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y. Crystalline/amorphous phase structure and molecular mobility of biodegradable poly(butylene adipate-co-butylene terephthalate) and related polyesters. Biomacromolecules 2002, 3(2), 390–396.CrossRefGoogle Scholar
  20. 20.
    Cranston, E.; Kawada, J.; Raymond, S.; Morin, F. G.; Marchessault, R. H. Cocrystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate). Biomacromolecules 2003, 4, 995–999.CrossRefGoogle Scholar
  21. 21.
    Gan, Z.; Kuwabara, K.; Yamamoto, M.; Abe, H.; Doi, Y. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters. Polym. Degrad. Stab. 2004, 83, 289–300.CrossRefGoogle Scholar
  22. 22.
    Ren, M.; Song, J.; Song, C.; Zhang, H.; Sun, X.; Chen, Q.; Zhang, H.; Mo, Z. Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J. Polym. Sci., Part B: Polym. Phys. 2005, 43(22), 3231–3241.CrossRefGoogle Scholar
  23. 23.
    Shi, X. Q.; Ito, H.; Kikutani, T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 2005, 46, 11442–11450.CrossRefGoogle Scholar
  24. 24.
    Qiu, Z.; Yan, C.; Lu, J.; Yang, W.; Ikehara, T.; Nishi, T. Various crystalline morphology of poly(butylene succinate-co-butylene adipate) in its miscible blends with poly(vinylidene fluoride). J. Phys. Chem. B 2007, 111(11), 2783–2789.CrossRefGoogle Scholar
  25. 25.
    Hwang, S. Y.; Jin, X. Y.; Yoo, E. S.; Im, S. S. Synthesis, physical properties and enzymatic degradation of poly(oxyethylene-b-butylene succinate) ionomers. Polymer 2011, 52(13), 2784–2791.CrossRefGoogle Scholar
  26. 26.
    Ojijo, V.; Sinha Ray, S.; Sadiku, R. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate]. ACS Appl. Mater. Interfaces 2012, 4(12), 6690–6701.CrossRefGoogle Scholar
  27. 27.
    Wang, X.; Shi, J.; Chen, Y.; Fu, Z.; Shi, Y. Nonisothermal crystallization kinetics of poly(butylene adipate-co-terephthalate) Copolyester. China Pet. Process. Petrochemical Technol. 2012, 14(1), 74–79.Google Scholar
  28. 28.
    Dil, E. J.; Carreau, P. J.; Favis, B. D. Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer 2015, 68, 202–212.CrossRefGoogle Scholar
  29. 29.
    Liu, F.; Zhang, J.; Wang, J.; Liu, X.; Zhang, R.; Hu, G.; Na, H.; Zhu, J. Soft segment free thermoplastic polyester elastomers with high performance. J. Mater. Chem. A 2015, 3, 13637–13641.CrossRefGoogle Scholar
  30. 30.
    Brunelle, D. J.; Jang, T. Optimization of poly(1,4-cyclohexylidene cyclohexane-1,4-dicarboxylate) (PCCD) preparation for increased crystallinity. Polymer 2006, 47(11), 4094–4104.CrossRefGoogle Scholar
  31. 31.
    Berti, C.; Celli, A.; Marchese, P.; Marianucci, E.; Barbiroli, G.; Di Credico, F. Influence of molecular structure and stereochemistry of the 1,4-cyclohexylene ring on thermal and mechanical behavior of poly(butylene 1,4-cyclohexanedicarboxylate). Macromol. Chem. Phys. 2008, 209(13), 1333–1344.CrossRefGoogle Scholar
  32. 32.
    Gigli, M.; Lotti, N.; Vercellino, M.; Visai, L.; Munari, A. Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 34, 86–97.CrossRefGoogle Scholar
  33. 33.
    Gigli, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Finelli, L.; Munari, A.; Dalla Rosa, M. Fully aliphatic copolyesters based on poly(butylene 1,4-cyclohexanedicarboxylate) with promising mechanical and barrier properties for food packaging applications. Ind. Eng. Chem. Res. 2013, 52(36), 12876–12886.CrossRefGoogle Scholar
  34. 34.
    Commereuc, S.; Askanian, H.; Verney, V.; Celli, A.; Marchese, P.; Berti, C. About the end life of novel aliphatic and aliphatic-aromatic (co)polyesters after UV-weathering: structure/degradability relationships. Polym. Degrad. Stab. 2013, 98(7), 1321–1328.CrossRefGoogle Scholar
  35. 35.
    Berti, C.; Binassi, E.; Celli, A.; Colonna, M.; Fiorini, M.; Marchese, P.; Marianucci, E.; Gazzano, M.; Credico, F. D. I.; Brunelle, D. J. Poly(1,4-cyclohexylenedimethylene 1,4-cyclohexanedicarboxylate): influence of stereochemistry of 1,4-cyclohexylene units on the thermal properties. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 619–630.CrossRefGoogle Scholar
  36. 36.
    Chen, L. P.; Yee, A. F.; Goetz, J. M.; Schaefer, J. Molecular structure effects on the secondary relaxation and impact strength of a series of polyester copolymer glasses. Macromolecules 1998, 31(16), 5371–5382.CrossRefGoogle Scholar
  37. 37.
    Gong, Y.; Hu, C. W.; Li, H.; Huang, K. L.; Tang, W. Isomer transformation and photoluminescence in novel coordination polymers constructed from 1,4-cyclohexanedicarboxylic acid and imidazole. J. Solid State Chem. 2005, 178(10), 3152–3158.CrossRefGoogle Scholar
  38. 38.
    Liu, F.; Qiu, J.; Wang, J.; Zhang, J.; Na, H.; Zhu, J. Role of cis-1,4-cyclohexanedicarboxylic acid in the regulation of the structure and properties of a poly(butylene adipate-co-butylene 1,4-cyclohexanedicarboxylate) copolymer. RSC Adv. 2016, 6(70), 65889–65897.CrossRefGoogle Scholar
  39. 39.
    Qiu, J.; Liu, F.; Zhang, J.; Na, H.; Zhu, J. Non-planar ring contained polyester modifying polylactide to pursue high toughness. Compos. Sci. Technol. 2016, 128, 41–48.CrossRefGoogle Scholar
  40. 40.
    Celli, A.; Marchese, P.; Sullalti, S.; Berti, C.; Barbiroli, G. Eco-friendly poly(butylene 1,4-cyclohexanedicarboxylate): relationships between stereochemistry and crystallization behavior. Macromol. Chem. Phys. 2011, 212(14), 1524–1534.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ningbo Key Laboratory of Polymer Materials, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  2. 2.College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations