Abstract
High performance resin must be used in the high performance glass fiber-reinforced plastic (GFRP) composites, but it is sometimes difficult to balance the processabilities and the final properties in the design of advanced thermoset GFRP composites. In this study, a phthalonitrile/benzoxazine (PPN/BZ) blend with excellent processability has been designed and applied in the GFRP composite materials. PPN/BZ blend with good solubility, low melt viscosity, appropriate gel condition and low-temperature curing behavior could enable their GFRP composite preparation with the prepreg-laminate method under a relatively mild condition. The resulted PPN/BZ GFRP composites exhibit excellent mechanical properties with flexural strength over 700 MPa and flexural modulus more than 19 GPa. Fracture surface morphologies of the PPN/BZ GFRP composites show that the interfacial adhesion between resin and GF is improved. The temperatures at weight loss 5% (T 5%) and char residue at 800 °C of all PPN/BZ GFRP composites are over 435 °C and 65% respectively. PPN/BZ GFRP composites with high performance characteristics may find applications under some critical circumstances with requirements of high mechanical properties and high service temperatures.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hensher, D. A. "Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications", Elsevier, Netherlands, 2016, p. 34.
Yazdanbakhsh, A.; Bank, L. C. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers 2014, 6(6), 1810–1826.
Raja, R. S.; Manisekar, K.; Manikandan, V. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis. Mater. Des. 2014, 55, 499–508.
Kempf, M.; Skrabala, O.; Altstädt, V. Acoustic emission analysis for characterisation of damage mechanisms in fibre reinforced thermosetting polyurethane and epoxy. Compos. Part B-Eng. 2014, 56, 477–483.
Al-Hadhrami, L. M.; Maslehuddin, M.; Ali, M. R. Chemical resistance and mechanical properties of glass fiber-reinforced plastic pipes for oil, gas, and power-plant applications. J. Compos. Constr. 2015, 20(1), DOI: 10.1061/(ASCE)CC.1943-5614.0000592.
Wang, X.; Shi, J. Z.; Liu, J. X.; Yang, L.; Wu, Z. S. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application. Mater. Des. 2014, 59, 558–564.
Frey, M.; Brunner, A. J. Assessing glass-fiber modification developments by comparison of glass-fiber epoxy composites with reference materials: some thoughts on relevance. P. I. Mech. Eng. L. J. Mat. 2017, 231(1-2), 49–54.
Viets, C.; Kaysser, S.; Schulte, K. Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems. Compos. Part B-Eng. 2014, 65, 80–88.
Sui, X. H.; Shi, J.; Yao, H. W.; Xu, Z. W.; Chen, L.; Li, X. J.; Ma, M. J.; Kuang, L. Y.; Fu, H. J.; Deng, H. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Compos. Part A-Appl. S. 2017, 92, 134–144.
Jiang, Z.; Zhang, H.; Zhang, Z.; Murayama, H.; Okamoto, K. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix. Compos. Part A-Appl. S. 2008, 39(11), 1762–1767.
Kornmann, X.; Rees, M.; Thomann, Y.; Necola, A.; Barbezat, M.; Thomann, R. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Compos. Sci. Technol. 2005, 65(14), 2259–2268.
Yang, X. L.; Wang, Z. C.; Xu, M. Z.; Zhao, R.; Liu, X. B. Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: carbon fiber and graphene nanoplatelet. Mater. Des. 2013, 44, 74–80.
Laskoski, M.; Dominguez, D. D.; Keller, T. M. Synthesis and properties of a bisphenol A based phthalonitrile resin. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(18), 4136–4143.
Laskoski, M., Dominguez, D. D.; Keller, T. M. Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability. Polymer 2007, 48(21), 6234–6240.
Cao, G. P.; Chen, W. J.; Wei, J. J.; Li, W. T.; Liu, X. B. Synthesis and characterization of a novel bisphthalonitrile containing benzoxazine. Express Polym. Lett. 2007, 1(8), 512–518.
Zhou, H.; Badashah, A.; Luo, Z. H.; Liu, F.; Zhao, T. Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group. Polym. Adv. Technol. 2011, 22(10), 1459–1465.
Derradji, M.; Ramdani, N.; Zhang, T.; Wang, J.; Feng, T. T.; Wang, H.; Liu, W. B. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles. Mater. Des. 2015, 71, 48–55.
Sastri, S. B.; Keller, T. M. Phthalonitrile cure reaction with aromatic diamines. J. Polym. Sci., Part A: Polym. Chem. 1998, 36(11), 1885–1890.
Yang, X. L.; Zhan, Y. Q.; Zhao, R.; Liu, X. B. Effects of graphene nanosheets on the dielectric, mechanical, thermal properties, and rheological behaviors of poly(arylene ether nitriles). J. Appl. Polym. Sci. 2012, 124(2), 1723–1730.
Zhang, Z. B.; Li, Z.; Zhou, H.; Lin, X. K.; Zhao, T., Zhang, M. Y.; Xu, C. H. Self-catalyzed silicon-containing phthalonitrile resins with low melting point, excellent solubility and thermal stability. J. Appl. Polym. Sci. 2014, 131(20), DOI: 10.1002/APP.40919.
Zhao, X.; Lei, Y. J.; Zhao, R.; Zhong, J. C.; Liu, X. Preparation and properties of halogen-free flame-retarded phthalonitrileepoxy blends. J. Appl. Polym. Sci. 2012, 123(6), 3580–3586.
Nair, C. R. Advances in addition-cure phenolic resins. Prog. Polym. Sci. 2004, 29(5), 401–498.
Dansiri, N.; Yanumet, N.; Ellis, J. W.; Ishida, H. Resin transfer molding of natural fiber reinforced polybenzoxazine composities. Polym. Compos. 2002, 23(3), 352–360.
Meng, F. B.; Ishida, H.; Liu, X. B. Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids. RSC Adv. 2014, 4(19), 9471–9475.
Ishida, H.; Allen, D. J. Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 1996, 37(20), 4487–4495.
Agag, T.; Takeichi, T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules 2003, 36(16), 6010–6017.
Wang, H. Y.; Zhao, P.; Ling, H.; Ran, Q. C.; Gu, Y. The effect of curing cycles on curing reactions and properties of a ternary system based on benzoxazine, epoxy resin, and imidazole. J. Appl. Polym. Sci. 2013, 127(3), 2169–2175.
GB/T 9341-2008/ISO 178; Plastics-Determination of flexural properties. Chinese Standard Press. Beijing, 2001.
Tung, C. Y. M.; Dynes, P. J. Relationship between viscoelastic properties and gelation in thermosetting systems. J. Appl. Polym. Sci. 1982, 27(2), 569–574.
Laza, J. M.; Julian, C. A.; Larrauri, E.; Rodriguez, M.; Leon, L. M. Thermal scanning rheometer analysis of curing kinetic of an epoxy resin: an amine as curing agent. Polymer 1999, 40(1), 35–45.
Laza, J. M.; Vilas, J. L.; Mijangos, F.; Rodriguez, M.; Leon, L. M. Analysis of the crosslinking process of epoxy-phenolic mixtures by thermal scanning rheometry. J. Appl. Polym. Sci. 2005, 98(2), 818–824.
Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 2007, 45(7), 1446–1452.
Augustine, D.; Mathew, D.; Nair, C. P. Phenol-containing phthalonitrile polymers-synthesis, cure characteristics and laminate properties. Polym. Int. 2013, 62(7), 1068–1076.
Xu, M. Z.; Jia, K.; Liu, X. B. Effect of bisphenol-A on the structures and properties of phthalonitrile-based resin containing benzoxazine. Express Polym. Lett. 2015, 9(6), 567–581.
Sastri, S. B.; Armistead, J. P.; Keller, T. M.,; Sorathia, U. Phthalonitrile-glass fabric composites. Polym. Compos. 1997, 18(1), 48–54.
Meng, F. B.; Zhao, R.; Zhan, Y. Q.; Liu, X. B. Design of thorn-like micro/nanofibers: fabrication and controlled morphology for engineered composite materials applications. J. Mater. Chem. 2011, 21(41), 16385–16390.
Acknowledgments
This work was financially supported by the South Wisdom Valley Innovative Research Team Program and Guangdong Shunde Great New Materials Co., Ltd.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Yang, XL., Li, K., Xu, MZ. et al. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite materials. Chin J Polym Sci 36, 106–112 (2018). https://doi.org/10.1007/s10118-018-2033-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10118-018-2033-y