Skip to main content

Advertisement

Log in

Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite materials

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

High performance resin must be used in the high performance glass fiber-reinforced plastic (GFRP) composites, but it is sometimes difficult to balance the processabilities and the final properties in the design of advanced thermoset GFRP composites. In this study, a phthalonitrile/benzoxazine (PPN/BZ) blend with excellent processability has been designed and applied in the GFRP composite materials. PPN/BZ blend with good solubility, low melt viscosity, appropriate gel condition and low-temperature curing behavior could enable their GFRP composite preparation with the prepreg-laminate method under a relatively mild condition. The resulted PPN/BZ GFRP composites exhibit excellent mechanical properties with flexural strength over 700 MPa and flexural modulus more than 19 GPa. Fracture surface morphologies of the PPN/BZ GFRP composites show that the interfacial adhesion between resin and GF is improved. The temperatures at weight loss 5% (T 5%) and char residue at 800 °C of all PPN/BZ GFRP composites are over 435 °C and 65% respectively. PPN/BZ GFRP composites with high performance characteristics may find applications under some critical circumstances with requirements of high mechanical properties and high service temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hensher, D. A. "Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications", Elsevier, Netherlands, 2016, p. 34.

    Google Scholar 

  2. Yazdanbakhsh, A.; Bank, L. C. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction. Polymers 2014, 6(6), 1810–1826.

    Article  Google Scholar 

  3. Raja, R. S.; Manisekar, K.; Manikandan, V. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis. Mater. Des. 2014, 55, 499–508.

    Article  Google Scholar 

  4. Kempf, M.; Skrabala, O.; Altstädt, V. Acoustic emission analysis for characterisation of damage mechanisms in fibre reinforced thermosetting polyurethane and epoxy. Compos. Part B-Eng. 2014, 56, 477–483.

    Article  CAS  Google Scholar 

  5. Al-Hadhrami, L. M.; Maslehuddin, M.; Ali, M. R. Chemical resistance and mechanical properties of glass fiber-reinforced plastic pipes for oil, gas, and power-plant applications. J. Compos. Constr. 2015, 20(1), DOI: 10.1061/(ASCE)CC.1943-5614.0000592.

    Google Scholar 

  6. Wang, X.; Shi, J. Z.; Liu, J. X.; Yang, L.; Wu, Z. S. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application. Mater. Des. 2014, 59, 558–564.

    Article  CAS  Google Scholar 

  7. Frey, M.; Brunner, A. J. Assessing glass-fiber modification developments by comparison of glass-fiber epoxy composites with reference materials: some thoughts on relevance. P. I. Mech. Eng. L. J. Mat. 2017, 231(1-2), 49–54.

    Google Scholar 

  8. Viets, C.; Kaysser, S.; Schulte, K. Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems. Compos. Part B-Eng. 2014, 65, 80–88.

    Article  CAS  Google Scholar 

  9. Sui, X. H.; Shi, J.; Yao, H. W.; Xu, Z. W.; Chen, L.; Li, X. J.; Ma, M. J.; Kuang, L. Y.; Fu, H. J.; Deng, H. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Compos. Part A-Appl. S. 2017, 92, 134–144.

    Article  CAS  Google Scholar 

  10. Jiang, Z.; Zhang, H.; Zhang, Z.; Murayama, H.; Okamoto, K. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix. Compos. Part A-Appl. S. 2008, 39(11), 1762–1767.

    Article  Google Scholar 

  11. Kornmann, X.; Rees, M.; Thomann, Y.; Necola, A.; Barbezat, M.; Thomann, R. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Compos. Sci. Technol. 2005, 65(14), 2259–2268.

    Article  CAS  Google Scholar 

  12. Yang, X. L.; Wang, Z. C.; Xu, M. Z.; Zhao, R.; Liu, X. B. Dramatic mechanical and thermal increments of thermoplastic composites by multi-scale synergetic reinforcement: carbon fiber and graphene nanoplatelet. Mater. Des. 2013, 44, 74–80.

    Article  CAS  Google Scholar 

  13. Laskoski, M.; Dominguez, D. D.; Keller, T. M. Synthesis and properties of a bisphenol A based phthalonitrile resin. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(18), 4136–4143.

    Article  CAS  Google Scholar 

  14. Laskoski, M., Dominguez, D. D.; Keller, T. M. Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability. Polymer 2007, 48(21), 6234–6240.

    Article  CAS  Google Scholar 

  15. Cao, G. P.; Chen, W. J.; Wei, J. J.; Li, W. T.; Liu, X. B. Synthesis and characterization of a novel bisphthalonitrile containing benzoxazine. Express Polym. Lett. 2007, 1(8), 512–518.

    Article  CAS  Google Scholar 

  16. Zhou, H.; Badashah, A.; Luo, Z. H.; Liu, F.; Zhao, T. Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group. Polym. Adv. Technol. 2011, 22(10), 1459–1465.

    Article  Google Scholar 

  17. Derradji, M.; Ramdani, N.; Zhang, T.; Wang, J.; Feng, T. T.; Wang, H.; Liu, W. B. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles. Mater. Des. 2015, 71, 48–55.

    Article  CAS  Google Scholar 

  18. Sastri, S. B.; Keller, T. M. Phthalonitrile cure reaction with aromatic diamines. J. Polym. Sci., Part A: Polym. Chem. 1998, 36(11), 1885–1890.

    Article  CAS  Google Scholar 

  19. Yang, X. L.; Zhan, Y. Q.; Zhao, R.; Liu, X. B. Effects of graphene nanosheets on the dielectric, mechanical, thermal properties, and rheological behaviors of poly(arylene ether nitriles). J. Appl. Polym. Sci. 2012, 124(2), 1723–1730.

    Article  CAS  Google Scholar 

  20. Zhang, Z. B.; Li, Z.; Zhou, H.; Lin, X. K.; Zhao, T., Zhang, M. Y.; Xu, C. H. Self-catalyzed silicon-containing phthalonitrile resins with low melting point, excellent solubility and thermal stability. J. Appl. Polym. Sci. 2014, 131(20), DOI: 10.1002/APP.40919.

    Google Scholar 

  21. Zhao, X.; Lei, Y. J.; Zhao, R.; Zhong, J. C.; Liu, X. Preparation and properties of halogen-free flame-retarded phthalonitrileepoxy blends. J. Appl. Polym. Sci. 2012, 123(6), 3580–3586.

    Article  CAS  Google Scholar 

  22. Nair, C. R. Advances in addition-cure phenolic resins. Prog. Polym. Sci. 2004, 29(5), 401–498.

    Article  CAS  Google Scholar 

  23. Dansiri, N.; Yanumet, N.; Ellis, J. W.; Ishida, H. Resin transfer molding of natural fiber reinforced polybenzoxazine composities. Polym. Compos. 2002, 23(3), 352–360.

    Article  CAS  Google Scholar 

  24. Meng, F. B.; Ishida, H.; Liu, X. B. Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids. RSC Adv. 2014, 4(19), 9471–9475.

    Article  CAS  Google Scholar 

  25. Ishida, H.; Allen, D. J. Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 1996, 37(20), 4487–4495.

    Article  CAS  Google Scholar 

  26. Agag, T.; Takeichi, T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules 2003, 36(16), 6010–6017.

    Article  CAS  Google Scholar 

  27. Wang, H. Y.; Zhao, P.; Ling, H.; Ran, Q. C.; Gu, Y. The effect of curing cycles on curing reactions and properties of a ternary system based on benzoxazine, epoxy resin, and imidazole. J. Appl. Polym. Sci. 2013, 127(3), 2169–2175.

    Article  CAS  Google Scholar 

  28. GB/T 9341-2008/ISO 178; Plastics-Determination of flexural properties. Chinese Standard Press. Beijing, 2001.

    Google Scholar 

  29. Tung, C. Y. M.; Dynes, P. J. Relationship between viscoelastic properties and gelation in thermosetting systems. J. Appl. Polym. Sci. 1982, 27(2), 569–574.

    Article  CAS  Google Scholar 

  30. Laza, J. M.; Julian, C. A.; Larrauri, E.; Rodriguez, M.; Leon, L. M. Thermal scanning rheometer analysis of curing kinetic of an epoxy resin: an amine as curing agent. Polymer 1999, 40(1), 35–45.

    Article  CAS  Google Scholar 

  31. Laza, J. M.; Vilas, J. L.; Mijangos, F.; Rodriguez, M.; Leon, L. M. Analysis of the crosslinking process of epoxy-phenolic mixtures by thermal scanning rheometry. J. Appl. Polym. Sci. 2005, 98(2), 818–824.

    Article  CAS  Google Scholar 

  32. Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 2007, 45(7), 1446–1452.

    Article  CAS  Google Scholar 

  33. Augustine, D.; Mathew, D.; Nair, C. P. Phenol-containing phthalonitrile polymers-synthesis, cure characteristics and laminate properties. Polym. Int. 2013, 62(7), 1068–1076.

    CAS  Google Scholar 

  34. Xu, M. Z.; Jia, K.; Liu, X. B. Effect of bisphenol-A on the structures and properties of phthalonitrile-based resin containing benzoxazine. Express Polym. Lett. 2015, 9(6), 567–581.

    Article  CAS  Google Scholar 

  35. Sastri, S. B.; Armistead, J. P.; Keller, T. M.,; Sorathia, U. Phthalonitrile-glass fabric composites. Polym. Compos. 1997, 18(1), 48–54.

    Article  CAS  Google Scholar 

  36. Meng, F. B.; Zhao, R.; Zhan, Y. Q.; Liu, X. B. Design of thorn-like micro/nanofibers: fabrication and controlled morphology for engineered composite materials applications. J. Mater. Chem. 2011, 21(41), 16385–16390.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the South Wisdom Valley Innovative Research Team Program and Guangdong Shunde Great New Materials Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Zhen Xu or Xiao-Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XL., Li, K., Xu, MZ. et al. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite materials. Chin J Polym Sci 36, 106–112 (2018). https://doi.org/10.1007/s10118-018-2033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2033-y

Keywords

Navigation