Advertisement

Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 584–591 | Cite as

Self-healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide

  • Yi-Gang Luan
  • Xiao-A Zhang
  • Sheng-Ling Jiang
  • Jian-Huan Chen
  • Ya-Fei Lyu
Article

Abstract

A self-healing supramolecular polymer composite (HSP-GO) was designed and prepared via incorporation of modified graphene oxide to hyperbranched polymer by hydrogen-bonding interactions. The polymer matrix based on amino-terminated hyperbranched polymer (HSP-NH2) was synthesized by carboxylation, Curtius rearrangement, and amination of hydroxyl-terminated hyperbranched polyester (HP-OH), while the modified graphene oxide was prepared by transformation of hydroxyl to isocyanate and further to carbamate ester. Spectroscopic methods were utilized to characterize the obtained polymer composites. Stress-strain test was selected to carefully study the self-healing property of HSP-GO. It is found that a small amount of modified graphene oxide (up to 2 wt%) improves the glass transition temperature (Tg), tensile strength, Young’s modulus, and self-healing efficiency of the polymer composites. After healed at room temperature for 10 min, the addition of modified graphene oxide improves the self-healing efficiency to 37% of its original tensile strength. The experiment result shows that the self-healing efficiency is related to the density of hydrogen bonding site and the molecular movement.

Keywords

Self-healing Supramolecular polymer Graphene oxide Hydrogen bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2018_2025_MOESM1_ESM.pdf (308 kb)
Self-Healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions between Hyperbranched Polymer and Graphene Oxide

References

  1. 1.
    Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R. Self-healing polymers and composites. Annu. Rev. Mater. Res. 2010, 40, 179–211.CrossRefGoogle Scholar
  2. 2.
    Hager, M. D.; Greil, P.; Leyens, C.; Zwaag, S. V. D. Self-healing materials. Adv. Mater. 2010, 22(47), 5424–5430.CrossRefGoogle Scholar
  3. 3.
    Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011, 10(1), 14–27.CrossRefGoogle Scholar
  4. 4.
    Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295(5560), 1698–1702.CrossRefGoogle Scholar
  5. 5.
    Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, L. W.; Rowan, S. J. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 2010, 132(34), 12051–12058.CrossRefGoogle Scholar
  6. 6.
    Klukovich, H. M.; Kean, Z. S.; Iacono, S. T.; Craig, S. L. Mechanically induced scission and subsequent thermal remending of perfluorocyclobutane polymers. J. Am. Chem. Soc. 2011, 133(44), 17882–17888.CrossRefGoogle Scholar
  7. 7.
    Zheng, P.; Mccarthy, T. J. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 2012, 134(4), 2024–2027.CrossRefGoogle Scholar
  8. 8.
    Chen, X.; Wudl, F.; Mal, A. K.; Shen, H.; Nuut, S. R. New thermally remendable highly cross-linked polymeric materials. Macromolecules 2003, 36(6), 1802–1807.CrossRefGoogle Scholar
  9. 9.
    Liu, F.; Li, F.; Deng, G.; Chen, Y.; Zhang, B.; Zhang, J.; Liu, C. Y. Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and self-healing properties. Macromolecules 2012, 45(3), 1636–1645.CrossRefGoogle Scholar
  10. 10.
    Ghosh, B.; Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 2009, 323(5920), 1458–1460.CrossRefGoogle Scholar
  11. 11.
    Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472(7343), 334–338.CrossRefGoogle Scholar
  12. 12.
    Ling, J.; Rong, M. Z.; Zhang, M. Q. Effect of molecular weight of PEG soft segments on photo-stimulated self-healing performance of coumarin functionalized polyurethanes. Chinese J. Polym. Sci. 2014, 32(10), 1286–1297.CrossRefGoogle Scholar
  13. 13.
    Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 2005, 30, 814–831.CrossRefGoogle Scholar
  14. 14.
    Herbst, F.; Döhler, D.; Michael, P.; Binder, W. H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 2013, 34(3), 203–220.CrossRefGoogle Scholar
  15. 15.
    Cuthbert, T. J.; Jadischke, J. J.; Bruyn, J. R. D.; Ragogna, P. J.; Gillies, E. R. Self-healing polyphosphonium ionic networks. Macromolecules 2017, 50, 5253–5260.CrossRefGoogle Scholar
  16. 16.
    Li, Y.; Li, J.; Chen, B.; Chen, Q.; Zhang, G.; Liu, S.; Ge, Z. Polyplex micelles with thermoresponsive heterogeneous coronasn for prolonged blood retention and promoted gene transfection. Biomacromolecules 2014, 15(8), 2914–2923.CrossRefGoogle Scholar
  17. 17.
    Wang, C.; Zhang, G.; Liu, G.; Hu, J.; Liu, S. Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J. Control. Release 2017, 259, 149–159.CrossRefGoogle Scholar
  18. 18.
    Zeng, Q.; Desai M. S.; Jin, H. E.; Lee, J. H.; Chang, J.; Lee, S. W. Self-healing elastin-bioglass hydrogels. Biomacromolecules 2016, 17(8), 2619–2625.CrossRefGoogle Scholar
  19. 19.
    Brocorens, P.; Linares, M.; Guyardduhayon, C.; Guillot, R.; Andrioletti, B.; Suhr, D.; Benjiamin, I.; Lazzaroni, R.; Bouteiller, L. Conformational plasticity of hydrogen bonded bis-urea supramolecular polymers. J. Phy. Chem. B 2013, 117(17), 5379–5386.CrossRefGoogle Scholar
  20. 20.
    van Gemert, G. M. L.; Peeters, J. W.; Söntjens, S. H. M.; Janssen, H. M.; Bosman, A. W. Self-healing supramolecular polymers in action. Macromol. Chem. Phys. 2012, 213, 234–242.CrossRefGoogle Scholar
  21. 21.
    Cordier, P.; Tournilhac, F.; Soulie-Ziakovi, C.; Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451(7181), 977–980.CrossRefGoogle Scholar
  22. 22.
    Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.CrossRefGoogle Scholar
  23. 23.
    Lopez, J.; Chen, Z.; Wang, C.; Andrews, S. C.; Cui, Y.; Bao, Z. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes. ACS Appl. Mater. Interfaces 2016, 8, 2318–2324.CrossRefGoogle Scholar
  24. 24.
    Tee, B. C.; Wang, C.; Allen, R.; Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7(12), 825–832.CrossRefGoogle Scholar
  25. 25.
    Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195.CrossRefGoogle Scholar
  26. 26.
    Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049–2053.CrossRefGoogle Scholar
  27. 27.
    Pei, S.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50(9), 3210–3228.CrossRefGoogle Scholar
  28. 28.
    Wang, C.; Liu, N.; Allen, R.; Tok, J. B. H.; Wu, Y.; Zhang, F.; Chen, Y.; Bao, Z. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv. Mater. 2013, 25, 5785–5790.CrossRefGoogle Scholar
  29. 29.
    Li, J.; Zhang, G.; Deng, L.; Zhao, S.; Gao, Y.; Jiang, K.; Sun, R.; Wong, C. In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J. Mater. Chem. A 2014, 2(48), 20642–20649.CrossRefGoogle Scholar
  30. 30.
    Xu, C.; Wu, X.; Zhu, J.; Wang, X. Synthesis of amphiphilic graphite oxide. Carbon 2008, 46(2), 386–389.CrossRefGoogle Scholar
  31. 31.
    Zhang, A.; Yang, L.; Lin, Y.; Yan, L.; Lu, H.; Wang, L. Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes: synthesis and characterization. J. Appl. Polym. Sci. 2013, 129(5), 2435–2442.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yi-Gang Luan
    • 1
  • Xiao-A Zhang
    • 1
  • Sheng-Ling Jiang
    • 1
  • Jian-Huan Chen
    • 1
  • Ya-Fei Lyu
    • 1
  1. 1.Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations