Kinetics Analysis on the Polycondensation Process of Poly(p-phenylene terephthalamide): Experimental Verification and Molecular Simulation
Abstract
The conventional low-temperature method of solution polycondensation was developed to realize the reaction of p-phenylenediamin and terephthaloyl chloride for the preparation of poly(p-phenylene terephthalamide) (PPTA). Some main factors influencing this process were investigated to determine the optimum condition for high molecular weight. Experiment showed significant slowing of the reaction and gradual deviation of second-order reaction kinetics due to diffusion control. These phenomena were studied theoretically via dynamic Monte Carlo simulation. A concise expression, X̅n ~ c0-0.88·t0.37, was proposed to describe the diffusioncontrolled polycondensation process as a function of the monomer concentration and reaction time. The theoretical results provided a good description of diffusion-effected kinetics for the polycondensation process of PPTA, and demonstrated good agreement with the experimental data. Some differences of scaling relations between model and experiment results were also discussed.
Keywords
Poly(p-phenylene terephthalamide) Molecular weight Reaction kinetics Molecular simulationPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 21204011, 51603120 and 21404023), the National Basic Research Program of the China 973 Program (No. 2011CB606101), Fundamental Research Funds for the Central Universities, Innovation Program of Shanghai Science and Technology Commission (No. 14521100605) and the Innovation Program of Shanghai Municipal Education Commission.
References
- 1.Rao, Y.; Waddon, A.; Farris, R. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer 2001, 42(13), 5937–5946.CrossRefGoogle Scholar
- 2.Mark, H.; Atlas, S.; Ogata, N. Aromatic polyamide. J. Polym. Sci. 1962, 61(172), 49–53.CrossRefGoogle Scholar
- 3.Anagnostopoulos, G.; Parthenios, J.; Galiotis, C. Thermal stress development in fibrous composites. Mater. Lett. 2008, 62(3), 341–345.CrossRefGoogle Scholar
- 4.Knijnenberg, A.; Bos, J.; Dingemans, T. J. The synthesis and characterisation of reactive poly(p-phenylene terephthalamide)s: a route towards compression stable aramid fibres. Polymer 2010, 51(9), 1887–1897.CrossRefGoogle Scholar
- 5.Rao, Y.; Waddon, A.; Farris, R. The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers. Polymer 2001, 42(13), 5925–5935.CrossRefGoogle Scholar
- 6.Du, S.; Wang, W.; Yan, Y.; Zhang, J.; Tian, M.; Zhang, L.; Wan, X. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups. Chem. Commun. 2014, 50(69), 9929–9931.CrossRefGoogle Scholar
- 7.Du, S.; Zhang, J.; Guan, Y.; Wan, X. Sequence effects on properties of the poly(p-phenylene terephthalamide)-based macroinitiators and their comb-like copolymers grafted by polystyrene side chains. Aust. J. Chem. 2014, 67(1), 39–48.CrossRefGoogle Scholar
- 8.Schwartz, P. A review of recent experimental results concerning the strength and time dependent behavior of fibrous poly(paraphenylene terephthalamide). Polym. Eng. Sci. 1987, 27(11), 842–847.CrossRefGoogle Scholar
- 9.Perepelkin, K. E.; Machalaba, N. N. Recent achievements in structure ordering and control of properties of para-aramide fibres. Mol. Cryst. Liq. Cryst. 2000, 353(1), 275–286.CrossRefGoogle Scholar
- 10.Sun, L.; Xu, J.; Luo, W.; Guo, C.; Tuo, X.; Wang, X. Investigation on the preparation of high molecular weight poly(p-phenylene terephthalamide) using CaH2 as acid absorbent. Acta Polymerica Sinica (in Chinese) 2012, (1), 70–74.CrossRefGoogle Scholar
- 11.Wang, S.; Liu, H.; Xiao, R. Determination of condensationpolymerization thermal effect of poly(paraphenylenetere-phalamide). Journal of DongHua University (in Chinese). 1984, 1, 41–46.Google Scholar
- 12.Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100(1), 791–802.CrossRefGoogle Scholar
- 13.Flory, P. J., Principles of polymer chemistry, Cornell University Press, New York, 1953, p. 317.Google Scholar
- 14.Cotts, D. B.; Berry, G. C. Polymerization kinetics of rigid rodlike molecules: polycondensation of poly([benzo (1,2-d:5,4-d') bisoxazole-2,6-diyl]-1,4-phenylene). Macromolecyles 1981, 14(4), 930–934CrossRefGoogle Scholar
- 15.Agarwal, U.; Khakhar, D. Enhancement of polymerization rates for rigid rod-like molecules by shearing. Nature 1992, 360, 53–55.CrossRefGoogle Scholar
- 16.Agarwal, U.; Khakhar, D. Diffusion-limited polymerization of rigid rodlike molecules: dilute solutions. J. Chem. Phys. 1992, 96(9), 7125–7134.CrossRefGoogle Scholar
- 17.Agarwal, U.; Khakhar, D. Shear flow induced orientation development during homogeneous solution polymerization of rigid rodlike molecules. Macromolecules 1993, 26(15), 3960–3965.CrossRefGoogle Scholar
- 18.Agarwal, U.; Khakhar, D. Simulation of diffusion-limited step-growth polymerization in 2D: effect of shear flow and chain rigidity. J. Chem. Phys. 1993, 99(4), 3067–3074.CrossRefGoogle Scholar
- 19.Agarwal, U.; Khakhar, D. Diffusion-limited polymerization of rigid rodlike molecules: semidilute solutions. J. Chem. Phys. 1993, 99(2), 1382–1392.CrossRefGoogle Scholar
- 20.Arpin, M.; Strazielle, C. Characterization and conformation of aromatic polyamides: poly(1,4-phenylene terephthalamide) and poly(p-benzamide) in sulphuric acid. Polymer 1977, 18(6), 591–598.CrossRefGoogle Scholar
- 21.Bair, T.; Morgan, P.; Killian, F. Poly(1,4-phenyleneterephthalamides). polymerization and novel liquid-crystalline solutions. Macromolecules 1977, 10(6), 1396–1400.Google Scholar
- 22.Gupta, J. S.; Agge, A.; Khakhar, D. Polymerization kinetics of rodlike molecules under quiescent conditions. AlChE J. 2001, 47(1), 177–186.CrossRefGoogle Scholar
- 23.Bao, J. S.; You, A. J.; Zhang, S. Q.; Zhang, S. A.; Hu, C. Studies on the semirigid chain polyamide-poly(1,4-phenyleneterephthalamide). J. Appl. Polym. Sci. 1981, 26(4), 1211–1220.CrossRefGoogle Scholar
- 24.Doi, M.; Edwards, S. F., The theory of polymer dynamics, Oxford University Press, New York, 1988, p. 295.Google Scholar
- 25.Tracy, M.; Pecora, R. Dynamics of rigid and semirigid rodlike polymers. Annu. Rev. Phys. Chem. 1992, 43(1), 525–557.CrossRefGoogle Scholar
- 26.Doi, M. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci., Part B 1981, 19, 229–243.Google Scholar
- 27.Teraoka, I.; Hayakawa, R. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation. I. transverse diffusion. J. Chem. Phys. 1988, 89(11), 6989–6995.CrossRefGoogle Scholar
- 28.Teraoka, I.; Hayakawa, R. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation. II. rotational diffusion. J. Chem. Phys. 1989, 91(4), 2643–2648.Google Scholar
- 29.Agge, A.; Jain, S.; Khakhar, D. Acceleration of the polymerization of rodlike molecules by flow. J. Am. Chem. Soc. 2000, 122(44), 10910–10913.CrossRefGoogle Scholar
- 30.Jain, S.; Agge, A.; Khakhar, D. Flow enhanced diffusion-limited polymerization of rodlike molecules. J. Chem. Phys. 2001, 114(1), 553–560.CrossRefGoogle Scholar
- 31.Zhang, R.; Kong, H. J.; Zhong, H. P.; Liu, J.; Zhou, J. J.; Teng, C. Q.; Ma, Y.; Yu, M. H. N-Alkyl PPTA: preparation and characterization. Adv. Mater. Res. 2012, 554, 105–109.Google Scholar
- 32.Fitzer, E.; Müller, D. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon 1975, 13(1), 63–69.CrossRefGoogle Scholar
- 33.Liu, J.; Ma, Y.; Wu, R.; Yu, M. Molecular simulation of diffusion-controlled kinetics in stepwise polymerization. Polymer 2016, 97, 335–345.CrossRefGoogle Scholar
- 34.Atkins, P.; Paula, D. J. Physical Chemistry, W. H. Freeman & Company, New York, 2006, p. 807.Google Scholar
- 35.Wang, S.; Liu, H.; Xiao, R. Determination of condensationpolymerization thermal effect of poly(paraphenyleneterephalamide). Journal of DongHua. University 1984, 1, 41–46.Google Scholar
- 36.Northolt, M. X-ray diffraction study of poly(p-phenylene terephthalamide) fibres. Eur. Polym. J. 1974, 10(9), 799–804.CrossRefGoogle Scholar
- 37.Northolt, M.; van Aartsen, J. On the crystal and molecular structure of poly-(p-phenylene terephthalamide). J. Polym. Sci., Part C: Polym. Lett. 1973, 11(5), 333–337.Google Scholar
- 38.Bu, Z.; Russo, P. S.; Tipton, D. L.; Negulescu, I. I. Self-diffusion of rodlike polymers in isotropic solutions. Macromolecules 1994, 27(23), 6871–6882.CrossRefGoogle Scholar
- 39.Wang, P.; Wang, K.; Zhang, J. Non-aqueous suspension polycondensation in NMP-CaCl2/paraffin system-A new approach for the preparation of poly(p-phenylene terephthalamide). Chinese J. Polym. Sci. 2015, 33(4), 564–575.CrossRefGoogle Scholar