Chinese Journal of Polymer Science

, Volume 36, Issue 5, pp 632–640 | Cite as

Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness

  • Morteza Khalina
  • Mohammad Hosain Beheshty
  • Ali Salimi
Article
  • 12 Downloads

Abstract

The physical and mechanical properties of blends composed of two kinds of epoxy resins of different numbers of functional groups and chemical structure were studied. One of the resins was a bifunctional epoxy resin based on diglycidyl ether of bisphenol A and the other resin was a multifunctional epoxy novolac resin. Attempt was made to establish a correlation between the structure and the final properties of cured epoxy samples. The blend samples containing high fraction of multifunctional epoxy resin showed higher solvent resistance and lower flexural modulus compared with the blends containing high fraction of bifunctional epoxy resin. The epoxy blends showed significantly higher ductility under bending test than the neat epoxy samples. The compressive modulus and strength increased with increasing of multifunctional epoxy in the samples, probably due to enhanced cross-link density and molecular weight. Morphological analysis revealed the presence of inhomogeneous sub-micrometer structures in all samples. The epoxy blends exhibited significantly higher fracture toughness (by 23% at most) compared with the neat samples. The improvement of the fracture toughness was attributed to the stick-slip mechanism for crack growth and activation of shear yielding and plastic deformation around the crack growth trajectories for samples with higher content of bifunctional epoxy resin as evidenced by fractography study.

Keywords

Epoxy Blend Functionality Mechanical property Toughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, H.; Neville. K. “Handbook of epoxy resins”, McGraw Hill, New York, 1982, p. 5–1Google Scholar
  2. 2.
    May, C. A. “Epoxy resins chemistry and technology”, 2nd edn. Marcel Dekker, New York, 1988, p. 551Google Scholar
  3. 3.
    Hamerton, I. “Recent developments in epoxy resins”, Rapra Review Reports, Shawbury, 1996, 8(7), 58–63.Google Scholar
  4. 4.
    Pham, H. A. Q.; Marks, M. J. Epoxy resins, in, “Encyclopedia of Polymer Science and Technology”, Vol. 9, 3rd Edition, John Wiley & Sons. 2010, p. 678.Google Scholar
  5. 5.
    Ratna, D.; Banthia, A. K., Rubber toughened epoxy. Macromol. Res. 2004, 12(1), 11–21.CrossRefGoogle Scholar
  6. 6.
    Ikram, S.; Munir, A. Mechanical and thermal properties of chemically modified epoxy resin. Open J. Synth. Theory Appl. 2012, 1(3), 36–43.CrossRefGoogle Scholar
  7. 7.
    Akbari, R.; Beheshty, M. H.; Shervin, M. Toughening of dicy-andiamide-cured DGEBA-based epoxy resins by CTBN liquid. Iran. Polym. J. 2013, 22(5), 313–324.CrossRefGoogle Scholar
  8. 8.
    Jamshidi, H.; Akbari, R.; Beheshty, M. H. Toughening of dicyandiamide-cured DGEBA-based epoxy resins using flexible diamine rubber. Iran. Polym. J. 2015, 24(5), 399–410.CrossRefGoogle Scholar
  9. 9.
    Hwang, J. F.; Manson, J. A.; Hertzberg, R. W.; Miller, G. A.; Sperling, L. H. Structure-property relationship in rubbertoughened epoxies. Polym. Eng. Sci. 1989, 29(20), 1466–1476.CrossRefGoogle Scholar
  10. 10.
    Saadati, P.; Baharvand, H.; Rahimi, A.; Morshedian, J. Effect of modified liquid rubber on increasing toughness of epoxy resins. Iran. Polym. J. 2005, 14(7), 637–646.Google Scholar
  11. 11.
    Martinez, I.; Martin, M. D.; Eceiza, A.; Oyanguren, P.; Mondragon, I. Phase separation in polysulfone-modified epoxy mixtures: relationships between curing conditions, morphology and ultimate behavior. Polymer 2000, 41(3), 1027–1035.CrossRefGoogle Scholar
  12. 12.
    Giannotti, M. I.; Bernal, C. R.; Oyanguren, P. A.; Galante, M. J. Morphology and fracture properties relationship of epoxy-diamine systems simultaneously modified with polysulfone and poly(ether imide). Polym. Eng. Sci. 2005, 45(9), 1312–1318.CrossRefGoogle Scholar
  13. 13.
    Li, H.; Gan, W.; Zhao, L.; Li, S. Studies on the phase separation of apolyetherimide modified epoxy resin. VI. Effect of surface energy on reaction-induced phase separation of epoxy resinmodified with polyetherimide. J. Macromol. Sci., Part A Pure Appl. Chem. A 2003, 40(8), 833–846.Google Scholar
  14. 14.
    Andrés, M. A.; Garmendia, J.; Valea, A.; Eceiza, A.; Mondragon, I. Fracture toughness of epoxy resins modified with poly-ethersulfone: influence of stoichiometry on themorphology ofthe mixtures. J. Appl. Polym. Sci. 1998, 69(1), 183–191.CrossRefGoogle Scholar
  15. 15.
    Grishchuk, S.; Gryshchuk, O.; Weber, M.; Karger-Kocsis, J. Structure and toughness of polyethersulfone (PESU)-modifiedanhydride-cured tetrafunctional epoxy resin: effect of PESU molecular mass. J. Appl. Polym. Sci. 2012, 123(2), 1193–1200.CrossRefGoogle Scholar
  16. 16.
    Ma, S. Q.; Liu, W. Q.; Hu, C. H.; Wang, Z. F. Modification of epoxy resins with polyether-g-polysiloxanes. Iran. Polym. J. 2010, 19(3), 185–196.Google Scholar
  17. 17.
    Tong, J. D.; Bai, R. K.; Zou, Y. F.; Pan, C. Y.; Ichimura, S. Flexibility improvement of epoxy-resin by using polysiloxanes and theirderivatives. J. Appl. Polym. Sci. 1994, 52(10), 1373–1381.CrossRefGoogle Scholar
  18. 18.
    Zhao, F.; Sun, Q. C.; Fang, D. P.; Yao, K. D. Preparation and properties of polydimethylsiloxane-modified epoxy resins. J. Appl. Polym. Sci. 2000, 76(11), 1683–1690.CrossRefGoogle Scholar
  19. 19.
    Mahnam, N.; Beheshty, M. H.; Barmar, M.; Shervin, M. Modification of dicyandiamide-cured epoxy resin with different molecular weight of polyethylene glycol and its effect on epoxy/glass prepreg characteristic. High Perform. Polym. 2013, 25(6), 705–713.CrossRefGoogle Scholar
  20. 20.
    Sprenger, S. Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 2013, 54(18), 4790–4797.CrossRefGoogle Scholar
  21. 21.
    Lee, J.; Yee, A. F. Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 2000, 41(23), 8363–8373.CrossRefGoogle Scholar
  22. 22.
    Sahoo, N. G.; Rana, S.; Cho, J. W.; Chan, S. H.; Li, L. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35(7), 837–867.CrossRefGoogle Scholar
  23. 23.
    Rahman, M. M.; Hosur, M.; Zainuddin, S.; Jajam, K. C.; Tippur, H. V.; Jee-lani. S. Mechanical characterization of epoxy compositesmodified with reactive polyol diluents and randomly-oriented amino-functionalized MWCNTs. Polym. Test. 2012, 31(8), 1083–1093.CrossRefGoogle Scholar
  24. 24.
    Pearson, R. A.; Yee, A. F. Toughening mechanisms in elastomer-modified epoxies: Part 3: The effect of crosslink density. J. Mater. Sci. 1989, 24(7), 2571–2580.CrossRefGoogle Scholar
  25. 25.
    Shaw, S. J.; Tod, D. A. The effects of cure conditions on a rubber-modified epoxy adhesive. J. Adhesion. 1989, 28(4), 231–246.CrossRefGoogle Scholar
  26. 26.
    Levita, G.; Petris, S. D.; Marchetti, A.; Lazzeri, A. Crosslink density and fracture toughness of epoxy resisn, J. Mater. Sci. 1991, 26(9), 2348–2352.CrossRefGoogle Scholar
  27. 27.
    Liu, S. H.; Nauman, E. B. Effects of crosslinking density on the toughening mechanisms of rubber-modified thermosets. J. Mater. Sci. 1991, 26(24), 6581–6590.CrossRefGoogle Scholar
  28. 28.
    Bradley, W. L.; Schultz, W.; Corelto, C.; Komatsu, S. “The synergistic effect of crosslink density and rubber additions on the fracture toughness of polymers, In Toughened Plastics”, ed. by Riew C. K.; Kinloch, A. J., ACS, Washington, 1993, p. 317.Google Scholar
  29. 29.
    Wang, H. H.; Chen, J. C. Modification and compatibility of epoxy resin with hydroxyl terminated or amine terminated polyuretanes. Polym. Eng. Sci. 1995, 35(18), 1468–1475.CrossRefGoogle Scholar
  30. 30.
    Kishi, H.; Shi, Y. B.; Huang, J.; Yee, A. F. Shear ductility and toughenability study of highly cross-linked epoxy/ polyethersulphone, J. Mater. Sci. 1998, 32(3), 3479–3488.CrossRefGoogle Scholar
  31. 31.
    Franco, M.; Mondragon, I.; Bucknall, C. B. Blends of epoxy resin with amine-terminated polyoxypropylene elastomer: Morphology and properties. J. Appl. Polym. Sci. 1999, 72(3), 427–434.CrossRefGoogle Scholar
  32. 32.
    Aizpurua, B.; Franco, M.; Corcuer, M. A.; Riccardi, C. C.; Mondragon, I. Chemorheology and ultimate behavior of epoxy-amine mixtures modified with a liquid oligomer. J. Appl. Polym. Sci. 2000, 76(8), 1269–1279.CrossRefGoogle Scholar
  33. 33.
    Arias, M. L.; Frontini, P. M.; Williams, R. J. J. Analysis of the damage zone around the crack tip for two rubber-modified epoxy matrices exhibiting different toughenability. Polymer 2003, 44(5), 1537–1546.CrossRefGoogle Scholar
  34. 34.
    Kang, B. U.; Jho, J. Y.; Kim, J.; Lee, S. S.; Park, Lim. S.; Choe, C. R. Effect of molecular weight between crosslinks on the fracture behavior of rubber-toughened epoxy adhesives. J. Appl. Polym. Sci. 2001, 79(1), 38–48.CrossRefGoogle Scholar
  35. 35.
    Kishi, H.; Naitou, T.; Matsuda, S.; Murakami, A.; Muraji, Y.; Nakagawa, Y. Mechanical oroperties and inhomogeneous nanostructures of dicyandiamide-cured epoxy resins. J. Polym. Sci., Part B: Polym. Phys. 2007, 45(12), 1425–1434.CrossRefGoogle Scholar
  36. 36.
    Zhang, D. H.; Jia, D. M.; Huang, X. B. Bisphenol-A epoxy resin reinforced and toughened by hyperbranched epoxy resin. Front. Chem. Eng. China 2007, 1(4), 349–354.CrossRefGoogle Scholar
  37. 37.
    Mc Aninch, I. M.; Palmese, G. R.; Len hart, J. L.; Scala, J. J. L. Epoxy-amine networks with varying epoxy polydispersity. J. Appl. Polym. Sci. 2015, 132(8), 41503–41512.CrossRefGoogle Scholar
  38. 38.
    Kishi, H.; Kunimitsu, Y.; Nakashima, Y.; Abe, T.; Imade, J.; Oshita, S.; Morishita, Y.; Asada, M. Control of nanostructures generated in epoxy matrices blended with PMMA-b-PnBA-b-PMMA triblock copolymers. Express Polym. Lett. 2015, 9(1), 23–35.CrossRefGoogle Scholar
  39. 39.
    Acebo, C.; Alorda, M.; Ferrando, F.; Fernández-Francos, X.; Serra, A.; Morancho, J. M.; Salla, J. M.; Ramis X. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine) cores of different molecular weight and poly(ε-caprolactone) arms. Express Polym. Lett. 2015, 9(9), 809–823.CrossRefGoogle Scholar
  40. 40.
    Thomas, R.; Abraham, J.; Thomas, S.; Thomas, S. Influence of carboxyl-terminated (butadiene-co-acrylonitrile) loading on the mechanical and thermal properties of cured epoxy blends. J. Polym. Sci., Part B: Polym. Phys. 2004, 42(13), 2531–2544.CrossRefGoogle Scholar
  41. 41.
    Yang, G.; Fu, S.; Yang, J. P. Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer 2007, 48(1), 302–310.CrossRefGoogle Scholar
  42. 42.
    Yang, G.; Zheng, B.; Yang, J. P.; Xu, G. S.; Fu, S. Y. Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone). J. Polym. Sci., Part A: Polym. Chem. 2008, 46(2), 612–624.CrossRefGoogle Scholar
  43. 43.
    Yang, J. P.; Chen, Z. K.; Yang, G.; Fu, S. Y.; Ye, L. Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer 2008, 49(13), 3168–3175.CrossRefGoogle Scholar
  44. 44.
    Chen, Z. K.; Yang, G.; Yang, J. P.; Fu, S. Y.; Ye, L.; Huang, Y. G. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether. Polymer 2009, 50(19), 4753–4759.CrossRefGoogle Scholar
  45. 45.
    Zhao, Y.; Chen, Z. K.; Liu, Y.; Xiao, H. M.; Feng, Q. P.; Fu, S. Y. Simultaneously enhanced cryogenic tensile strength and fracture toughness of epoxy resins by carboxylic nitrilebutadiene nano-rubber. Compos: Part A. 2013, 55, 178–187.CrossRefGoogle Scholar
  46. 46.
    Liu. Yang, G.; Xiao, H. M.; Feng, Q. P.; Fu, S. Y. Mechanical properties of cryogenic epoxy adhesives: effects of mixed curing agent content. Int. J. Adhes. Adhes. 2013, 41, 113–118.CrossRefGoogle Scholar
  47. 47.
    Feng, Q. P.; Yang, J. P.; Liu, Y. I.; Xiao, H.; Fu, S. Simultaneously enhanced cryogenic tensile strength, ductility and impact resistance of epoxy resins by polyethylene glycol. J. Mater. Sci. Technol.; 2014, 30(1), 90–96.CrossRefGoogle Scholar
  48. 48.
    Halawani, N.; Augé, J. L.; Morel, H.; Gain, O.; Pruvost, S. Electrical, thermal and mechanical properties of poly-etherimide epoxy-diamine blend. Compos. Part B 2017, 110, 530–541.CrossRefGoogle Scholar
  49. 49.
    Cheng, X.; Wu, Q.; Morgan, S. E.; Wiggins, J. S. Morphologies and mechanical properties of polyethersulfone modified epoxy blends through multifunctional epoxy composition. J. Appl. Polym. Sci. 2017, 134(18), 44775–44785.CrossRefGoogle Scholar
  50. 50.
    Karger-Kocsis J.; Friedrich K. Fatigue crack propagation and related failure in modified, anhydride-cured epoxy resins. Colloid. Polym. Sci. 1992, 270(6), 549–562.CrossRefGoogle Scholar
  51. 51.
    Karger-Kocsis J.; Friedrich K. Microstructure-related fracture toughness and fatigue crack growth behavior in toughened, anhydride-cured epoxy resins. Compos. Sci. Technol. 1993, 48(1), 263–272.CrossRefGoogle Scholar
  52. 52.
    Marks, M. J.; Snelgrove, R. V. Effect of conversion on the structure-property relationships of amine-cured epoxy thermosets. ACS Appl. Mater. Interfaces 2009, 1(4), 921–926.CrossRefGoogle Scholar
  53. 53.
    Pramanik, M.; Fowler, E. W.; Rawlins, J. W. Another look at epoxy thermosets correlating structure with mechanical properties. Polym. Eng. Sci. 2014, 54(9), 1990–2004.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Morteza Khalina
    • 1
  • Mohammad Hosain Beheshty
    • 1
  • Ali Salimi
    • 2
  1. 1.Department of CompositesIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Department of Resin and AdhesivesIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations