Skip to main content
Log in

Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

There has been controversy as to whether the addition of nanoparticles to a polymer melt causes perturbed chain structure of polymers. In this work, the chain conformations of polydimethylsiloxane (PDMS) with addition of polyhedral oligomeric silsesquioxane (POSS) nanoparticles have been studied using a classical density functional approach. Under the strong interactions of POSS-PDMS, the radius of gyration of PDMS in the nanocomposites can either increase or decline depending on particle loading. After adding nanoparticles with larger size or weaker interactions, both the increasing and the declining amplitudes can be largely suppressed. The results provide a deep understanding of chain conformation in polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul, D. R.; Robeson, L. M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49(15), 3187–3204.

    Article  CAS  Google Scholar 

  2. Ganesan, V. Some issues in polymer nanocomposites: theoretical and modeling opportunities for polymer physics. J. Polym. Sci., Part B: Polym. Phys. 2008, 46(24), 2666–2671.

    Article  CAS  Google Scholar 

  3. Pandey, Y. N.; Papakonstantopoulos, G. J.; Doxastakis, M. Polymer/nanoparticle interactions: bridging the gap. Macromolecules 2013, 46(13), 5097–5106.

    Article  CAS  Google Scholar 

  4. Kumar, S. K.; Krishnamoorti, R. Nanocomposites: structure, phase behavior, and properties. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 37–58.

    Article  CAS  Google Scholar 

  5. Allegra, G.; Raos, G.; Vacatello, M. Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci. 2008, 33(7), 683–731.

    Article  CAS  Google Scholar 

  6. Genix, A. C.; Oberdisse, J. Structure and dynamics of polymer nanocomposites studied by X-ray and neutron scattering techniques. Curr. Opin. Colloid Interface Sci. 2015, 20(4), 293–303.

    Article  CAS  Google Scholar 

  7. Nakatani, A.; Chen, W.; Schmidt, R.; Gordon, G.; Han, C. C. Chain dimensions in polysilicate-filled poly(dimethyl siloxane). Polymer 2001, 42(8), 3713–3722.

    Article  CAS  Google Scholar 

  8. Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; van Horn, B.; Guan, Z.; Chen, G.; Krishnan, R. S. General strategies for nanoparticle dispersion. Science 2006, 311(5768), 1740–1743.

    Article  CAS  Google Scholar 

  9. Tuteja, A.; Duxbury, P. M.; Mackay, M. E. Polymer chain swelling induced by dispersed nanoparticles. Phys. Rev. Lett. 2008, 100(7), 077801.

    Article  Google Scholar 

  10. Tung, W. S.; Bird, V.; Composto, R. J.; Clarke, N.; Winey, K. I. Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering. Macromolecules 2013, 46(13), 5345–5354.

    Article  CAS  Google Scholar 

  11. Tung, W. S.; Composto, R. J.; Clarke, N.; Winey, K. I. Anisotropic polymer conformations in aligned SWCNT/PS nanocomposites. ACS Macro Lett. 2015, 4(9), 916–920.

    Article  CAS  Google Scholar 

  12. Nusser, K.; Neueder, S.; Schneider, G. J.; Meyer, M.; Pyckhout-Hintzen, W.; Willner, L.; Radulescu, A.; Richter, D. Conformations of silica-poly(ethylene-propylene) nanocomposites. Macromolecules 2010, 43(23), 9837–9847.

    Article  CAS  Google Scholar 

  13. Sen, S.; Xie, Y.; Kumar, S. K.; Yang, H.; Bansal, A.; Ho, D. L.; Hall, L.; Hooper, J. B.; Schweizer, K. S. Chain conformations and bound-layer correlations in polymer nanocomposites. Phys. Rev. Lett. 2007, 98(12), 128302.

    Article  Google Scholar 

  14. Jouault, N.; Dalmas, F.; Said, S.; di Cola, E.; Schweins, R.; Jestin, J.; Boué, F. Direct measurement of polymer chain conformation in well-controlled model nanocomposites by combining SANS and SAXS. Macromolecules 2010, 43(23), 9881–9891.

    Article  CAS  Google Scholar 

  15. Genix, A. C.; Tatou, M.; Imaz, A.; Forcada, J.; Schweins, R.; Grillo, I.; Oberdisse, J. Modeling of intermediate structures and chain conformation in silica-latex nanocomposites observed by SANS during annealing. Macromolecules 2012, 45(3), 1663–1675.

    Article  CAS  Google Scholar 

  16. Crawford, M.; Smalley, R.; Cohen, G.; Hogan, B.; Wood, B.; Kumar, S.; Melnichenko, Y. B.; He, L.; Guise, W.; Hammouda, B. Chain conformation in polymer nanocomposites with uniformly dispersed nanoparticles. Phys. Rev. Lett. 2013, 110(19), DOI: 10.1103/PhysRevLett.110.196001

    Google Scholar 

  17. Banc, A.; Genix, A. C.; Dupas, C.; Sztucki, M.; Schweins, R.; Appavou, M. S.; Oberdisse, J. Origin of small-angle scattering from contrast-matched nanoparticles: a study of chain and filler structure in polymer nanocomposites. Macromolecules 2015, 48(18), 6596–6605.

    Article  CAS  Google Scholar 

  18. Jouault, N.; Crawford, M. K.; Chi, C.; Smalley, R. J.; Wood, B.; Jestin, J.; Melnichenko, Y. B.; He, L.; Guise, W. E.; Kumar, S. K. Polymer chain behavior in polymer nanocomposites with attractive interactions. ACS Macro Lett. 2016, 5(4), 523–527.

    Article  CAS  Google Scholar 

  19. Ganesan, V.; Khounlavong, L.; Pryamitsyn, V. Equilibrium characteristics of semiflexible polymer solutions near probe particles. Phys. Rev. E 2008, 78(5), 051804.

    Article  Google Scholar 

  20. Cui, J.; Li, W.; Jiang, W. Simulation study of co-assembly of ABC triblock copolymer/nanoparticle into multicompartment hybrids in selective solvent. Chinese J. Polym. Sci. 2013, 31(9), 1225–1232.

    Article  CAS  Google Scholar 

  21. Khounlavong, L.; Ganesan, V. Influence of interfacial layers upon the barrier properties of polymer nanocomposites. J. Chem. Phys. 2009, 130 (10), DOI: 10.1063/1.3079138

    Google Scholar 

  22. Frischknecht, A. L.; McGarrity, E. S.; Mackay, M. E. Expanded chain dimensions in polymer melts with nanoparticle fillers. J. Chem. Phys. 2010, 132(20), 204901.

    Article  Google Scholar 

  23. Ganesan, V.; Ellison, C. J.; Pryamitsyn, V. Mean-field models of structure and dispersion of polymer-nanoparticle mixtures. Soft Matter 2010, 6 (17), 4010–4025.

    Article  CAS  Google Scholar 

  24. Vacatello, M. Chain dimensions in filled polymers: an intriguing problem. Macromolecules 2002, 35(21), 8191–8193.

    Article  CAS  Google Scholar 

  25. Sharaf, M. A.; Mark, J. E. Monte Carlo simulations on the effects of nanoparticles on chain deformations and reinforcement in amorphous polyethylene networks. Polymer 2004, 45 (11), 3943–3952.

    Article  CAS  Google Scholar 

  26. Takhulee, A.; Ozisik, R.; Vao-soongnern, V. Monte Carlo simulation of the structure of mono-and bidisperse polyethylene nanocomposites. Chinese J. Polym. Sci. 2015, 33(2), 275–283.

    Article  CAS  Google Scholar 

  27. Vogiatzis, G. G.; Voyiatzis, E.; Theodorou, D. N. Monte Carlo simulations of a coarse grained model for an athermal all-polystyrene nanocomposite system. Eur. Polym. J. 2011, 47(4), 699–712.

    Article  CAS  Google Scholar 

  28. Ndoro, T. V.; Voyiatzis, E.; Ghanbari, A.; Theodorou, D. N.; Bohm, M. C.; Muller-Plathe, F. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: Atomistic molecular dynamics simulations. Macromolecules 2011, 44(7), 2316–2327.

    Article  CAS  Google Scholar 

  29. Karatrantos, A.; Composto, R. J.; Winey, K. I.; Clarke, N. Structure and conformations of polymer/SWCNT nanocomposites. Macromolecules 2011, 44(24), 9830–9838.

    Article  CAS  Google Scholar 

  30. Padmanabhan, V.; Frischknecht, A. L.; Mackay, M. E. Effect of chain stiffness on nanoparticle segregation in polymer/nanoparticle blends near a substrate. Macromol. Theory Simul. 2012, 21(2), 98–105.

    Article  CAS  Google Scholar 

  31. Karatrantos, A.; Clarke, N.; Composto, R. J.; Winey, K. I. Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter 2015, 11 (2), 382–388.

    Article  CAS  Google Scholar 

  32. Karatrantos, A.; Clarke, N.; Kröger, M. Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale: a review. Polym. Rev. 2016, 56(3), 385–428.

    Article  CAS  Google Scholar 

  33. Hall, L. M.; Anderson, B. J.; Zukoski, C. F.; Schweizer, K. S. Concentration fluctuations, local order, and the collective structure of polymer nanocomposites. Macromolecules 2009, 42(21), 8435–8442.

    Article  CAS  Google Scholar 

  34. Frischknecht, A. L.; Padmanabhan, V.; Mackay, M. E. Surface-induced phase behavior of polymer/nanoparticle blends with attractions. J. Chem. Phys. 2012, 136(16), DOI: 10.1063/1.4705308

    Google Scholar 

  35. Ebner, C.; Saam, W.; Stroud, D. Density-functional theory of simple classical fluids. I. Surfaces. Phys. Rev. A 1976, 14(6), 2264–2273.

    Google Scholar 

  36. Chandler, D.; McCoy, J. D.; Singer, S. J. Density functional theory of nonuniform polyatomic systems. I. general formulation. J. Chem. Phys. 1986, 85(10), 5971–5976.

    Article  CAS  Google Scholar 

  37. Yu, Y. X.; Wu, J. Density functional theory for inhomogeneous mixtures of polymeric fluids. J. Chem. Phys. 2002, 117(5), 2368–2376.

    Article  CAS  Google Scholar 

  38. Yu, Y. X.; Gao, G. H.; Wang, X. L. Density functional theory study on the structure and capillary phase transition of a polymer melt in a slitlike pore: effect of attraction. J. Phys. Chem. B 2006, 110(29), 14418–14425.

    Article  CAS  Google Scholar 

  39. Tripathi, S.; Chapman, W. Microstructure and thermodynamics of inhomogeneous polymer blends and solutions. Phys. Rev. Lett. 2005, 94(8), DOI: 10.1103/PhysRevLett.94.087801

    Google Scholar 

  40. Tripathi, S.; Chapman, W. G. Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures. J. Chem. Phys. 2005, 122(9), DOI: 10.1063/1.1853371

    Google Scholar 

  41. Yu, Y. X.; Wu, J. Extended test-particle method for predicting the inter-and intramolecular correlation functions of polymeric fluids. J. Chem. Phys. 2003, 118(8), 3835–3842.

    Article  CAS  Google Scholar 

  42. Yu, Y. X.; Wu, J. Z.; You, F. Q.; Gao, G. H. A Self-consistent theory for the inter-and intramolecular correlation functions of a Hard-Sphere-Yukawa-Chain fluids. Chinese Phys. Lett. 2005, 22(1), 246–249.

    Article  Google Scholar 

  43. Bymaster, A. "Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids", Thesis, Rice University, 2009.

    Google Scholar 

  44. Everaers, R.; Ejtehadi, M. Interaction potentials for soft and hard ellipsoids. Phys. Rev. E 2003, 67(4), DOI: 10.1103/PhysRevE. 67.041710

    Google Scholar 

  45. Frischknecht, A. L.; Curro, J. G. Improved united atom force field for poly(dimethylsiloxane). Macromolecules 2003, 36(6), 2122–2129.

    Article  CAS  Google Scholar 

  46. Striolo, A.; McCabe, C.; Cummings, P. T.; Chan, E. R.; Glotzer, S. C. Aggregation of POSS monomers in liquid hexane:a molecular-simulation study. J. Phys. Chem. B 2007, 111(42), 12248–12256.

    Article  CAS  Google Scholar 

  47. Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 1989, 63(9), 980–983.

    Article  CAS  Google Scholar 

  48. Hansen, J. P.; McDonald, I., "Theory of Simple Liquids", Academic Press, New York, 1986.

    Google Scholar 

  49. Jain, S.; Dominik, A.; Chapman, W. G. Modified interfacial statistical associating fluid theory: a perturbation density functional theory for inhomogeneous complex fluids. J. Chem. Phys. 2007, 127(24), DOI: 10.1063/1.2806932

    Google Scholar 

  50. Chapman, W. G.; Jackson, G.; Gubbins, K. E. Phase equilibria of associating fluids. Mol. Phys. 1988, 65(5), 1057–1079.

    Article  CAS  Google Scholar 

  51. Tree, D. R.; Muralidhar, A.; Doyle, P. S.; Dorfman, K. D. Is DNA a good model polymer? Macromolecules 2013, 46(20), 8369–8382.

    Article  CAS  Google Scholar 

  52. Honnell, K. G.; Curro, J. G.; Schweizer, K. S. Local structure of semiflexible polymer melts. Macromolecules 1990, 23(14), 3496–3505.

    Article  CAS  Google Scholar 

  53. Yethiraj, A.; Hall, C. K. Monte Carlo simulations and integral equation theory for microscopic correlations in polymeric fluids. J. Chem. Phys. 1992, 96(1), 797–807.

    Article  CAS  Google Scholar 

  54. Edwards, C. J. C.; Richards, R. W.; Stepto, R. F. T.; Dodgson, K.; Higgins, J. S.; Semlyen, J. A. Studies of cyclic and linear poly(dimethyl siloxanes). 14. particle scattering functions. Polymer 1984, 25(3), 365–368.

    Article  CAS  Google Scholar 

  55. Arrighi, V.; Gagliardi, S.; Dagger, A. C.; Semlyen, J. A.; Higgins, J. S.; Shenton, M. J. Conformation of cyclics and linear chain polymers in bulk by SANS. Macromolecules 2004, 37(21), 8057–8065.

    Article  CAS  Google Scholar 

  56. Wei, Z.; Hou, Y.; Ning, N.; Zhang, L.; Tian, M.; Mi, J. Theoretical insight into dispersion of silica nanoparticles in polymer melts. J. Phys. Chem. B 2015, 119(30), 9940–9948.a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Basic Research Program of China (No. 2015CB654700 (2015CB674704)) and the National Natural Science Foundation of China (Nos. 21476007, 51525301 and 51521062) are gratefully acknowledged. We also express our sincere thanks to the CHEMCLOUDCOMPUTING of Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Tian or Jian-Guo Mi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, ZY., Ning, NY., Tian, M. et al. Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles. Chin J Polym Sci 36, 505–513 (2018). https://doi.org/10.1007/s10118-018-2019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2019-9

Keywords

Navigation