Skip to main content
Log in

Investigations on the interactions between Li-TFSI and glass fibers in the ternary PP/GF/Li-TFSI composites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The polypropylene/glass fiber (PP/GF) composites with excellent antistatic performance and improved mechanical properties have been reported by incorporation of a very small amount of the organic salt, lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI), into the PP/GF composites. It was considered that GF could play the role as the pathways for the movements of ions in the ternary composites. In this work, the interactions between Li-TFSI and glass fiber and the effects of such interactions on the physical properties of the composites have been systematically investigated. Three types of glass fibers with different ―OH group concentrations have been prepared in order to compare the interactions between GF and Li-TFSI. It was found that the ―OH group concentrations on the surface of glass fiber have significant effects on interactions between glass fibers and Li-TFSI. Such interactions are crucial for both the antistatic and mechanical performances of the final PP/GF/Li-TFSI composites. The investigation indicated that the GF with high ―OH group concentrations confined the movement of TFSI−, which decreased the antistatic properties of PP/GF/Li-TFSI composites. On the other hand, the GF with low ―OH group concentrations inhibited the absorption of Li-TFSI onto the GF, which also hindered the formation of Li-TFSI conductive pathway. The best antistatic performance of the ternary composites can be achieved at the intermediate ―OH concentrations on the GF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gulrez, S. K. H.; Ali Mohsin, M. E.; Shaikh, H.; Anis, A.; Pulose, A. M.; Yadav, M. K.; Qua, E. H. P.; Al-Zahrani, S. M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014, 35(5), 900–914.

    Article  CAS  Google Scholar 

  2. Maki, N.; Nakano, S.; Sasaki, H. Development of a packaging material using non-bleed-type antistatic ionomer. Packag. Technol. Sci. 2004, 17(5), 249–256.

    Article  CAS  Google Scholar 

  3. Yoon, S. W.; Lee, S.; Choi, I. S.; Do, Y.; Park, S. Electrical and mechanical properties of polyethylene/MWCNT composites produced by polymerization using Cp2ZrCl2 supported on MWCNTs. Macromol. Res. 2015, 23(8), 713–718.

    Article  CAS  Google Scholar 

  4. Dudler, V.; Grob, M. C.; Mérian, D. Percolation network in polyolefins containing antistatic additives imaging by low voltage scanning electron microscopy. Polym. Degrad. Stab. 2000, 68(3), 373–379.

    Article  CAS  Google Scholar 

  5. Ding, Y.; Tang, H.; Zhang, X.; Wu, S.; Xiong, R. Effects of 1-n-tetradecyl-3-methylimidazolium bromide on the properties of polypropylene. J. Appl. Polym. Sci. 2008, 109(2), 1138–1142.

    Article  CAS  Google Scholar 

  6. Ding, Y.; Tang, H.; Zhang, X.; Wu, S.; Xiong, R. Antistatic ability of 1-n-tetradecyl-3-methylimidazolium bromide and its effects on the structure and properties of polypropylene. Eur. Polym. J. 2008, 44(4), 1247–1251.

    Article  CAS  Google Scholar 

  7. Grob, M. C.; Minder, E. Permanent antistatic additives: new developments. Plast. Addit. Compd. 1999, 1(3), 20–26.

    Article  CAS  Google Scholar 

  8. Li, C.; Liang, T.; Lu, W.; Tang, C.; Hu, X.; Cao, M.; Liang, J. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Compos. Sci. Technol. 2004, 64(13-14), 2089–2096.

    Article  CAS  Google Scholar 

  9. Wang, X.; Liu, L.; Tan, J. Preparation of an ionic-liquid antistatic/photostabilization additive and its effects on polypropylene. J. Vinyl Addit. Technol. 2010, 16(1), 58–63.

    Article  Google Scholar 

  10. Williams, J. B.; Geick, K. S.; Falter, J. A.; Hall, L. K. Optimization of antistatic additives in polypropylene. J. Vinyl Addit. Technol. 1995, 1(4), 282–285.

    Article  CAS  Google Scholar 

  11. Zheng, A.; Xu, X.; Xiao, H.; Li, N.; Guan, Y.; Li, S. Antistatic modification of polypropylene by incorporating Tween/ modified Tween. Appl. Surf. Sci. 2012, 258(22), 8861–8866.

    Article  CAS  Google Scholar 

  12. Jiang, X.; Bin, Y.; Kikyotani, N.; Matsuo, M. Thermal, electrical and mechanical properties of ultra-high molecular weight polypropylene and carbon filler composites. Polym. J. 2006, 38(5), 419–431.

    Article  CAS  Google Scholar 

  13. King, J. A.; Johnson, B. A.; Via, M. D.; Ciarkowski, C. J. Effects of carbon fillers in thermally conductive polypropylene based resins. Polym. Compos. 2010, 31(3), 497–506.

    CAS  Google Scholar 

  14. Li, C.; Li, Z.; Zhang, B.; Lu, W.; Tang, Y.; Fang, G.; Hu, X.; Liang, J. Modifying the poly ether ester antistatic agent by carbon nanotubes, the antistatic effect on polypropylene fibers. Prog. Nat. Sci. 2004, 14(9), 805–810.

    Article  CAS  Google Scholar 

  15. Moskalyuk, O. A.; Aleshin, A. N.; Tsobkallo, E. S.; Krestinin, A. V.; Yudin, V. E. Electrical conductivity of polypropylene fibers with dispersed carbon fillers. Phys. Solid State. 2012, 54(10), 2122–2127.

    Article  CAS  Google Scholar 

  16. Fujita, K.; Murata, K.; Masuda, M.; Nakamura, N.; Ohno, H. Ionic liquids designed for advanced applications in bioelectrochemistry. RSC Adv. 2012, 2(10), 4018–4030.

    Article  CAS  Google Scholar 

  17. Tokuda, H.; Hayamizu, K.; Ishii, K.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 2004, 108(42), 16593–16600.

    Article  CAS  Google Scholar 

  18. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 2005, 109(13), 6103–6110.

    Article  CAS  Google Scholar 

  19. Tokuda, H.; Ishii, K.; Susan, M. A.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 2006, 110(6), 2833–2839.

    Article  CAS  Google Scholar 

  20. Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 2006, 110(39), 19593–19600.

    Article  CAS  Google Scholar 

  21. Xing, C.; Zheng, X.; Xu, L.; Jia, J.; Ren, J.; Li, Y. Toward an optically transparent, antielectrostatic, and robust polymer composite: morphology and properties of polycarbonate/ionic liquid composites. Ind. Eng. Chem. Res 2014, 53(11), 4304–4311.

    Article  CAS  Google Scholar 

  22. Gu, S.; Zhu, L.; Mercier, C.; Li, Y. Glass fiber networks as an orbit for ions: fabrication of excellent antistatic PP/GF composites with extremely low organic salts loadings. ACS Appl. Mater. Interfaces 2017, 9(21), 18305–18313.

    Article  CAS  Google Scholar 

  23. Ishida, H.; Koenig, J. L. Fourier transform infrared spectroscopic study of the structure of silane coupling agent on E-glass fiber. J. Colloid Interface Sci. 1978, 64(3), 565–576.

    Article  Google Scholar 

  24. Herstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L.; Lassègues, J. C. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl) imide anion (TFSI-). J. Raman Spectrosc. 2005, 36(8), 762–770.

    Article  CAS  Google Scholar 

  25. Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J. C.; Grondin, J.; Servant, L. Spectroscopic and theoretical study of (CF3SO2)2 N-(TFSI-) and (CF3SO2)2NH (HTFSI). J. Phys. Chem. A 1998, 102(19), 3249–3258.

    Article  CAS  Google Scholar 

  26. Egashira, M.; Todo, H.; Yoshimoto, N.; Morita, M. Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J. Power Sources 2008, 178(2), 729–735.

    Article  CAS  Google Scholar 

  27. Borodin, O.; Smith, D. S. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 2014, 39(4), 1620–1629.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21674033 and 51173036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, SL., Liu, HH., Cao, H. et al. Investigations on the interactions between Li-TFSI and glass fibers in the ternary PP/GF/Li-TFSI composites. Chin J Polym Sci 36, 113–118 (2018). https://doi.org/10.1007/s10118-018-2018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2018-x

Keywords

Navigation