Abstract
The polypropylene/glass fiber (PP/GF) composites with excellent antistatic performance and improved mechanical properties have been reported by incorporation of a very small amount of the organic salt, lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI), into the PP/GF composites. It was considered that GF could play the role as the pathways for the movements of ions in the ternary composites. In this work, the interactions between Li-TFSI and glass fiber and the effects of such interactions on the physical properties of the composites have been systematically investigated. Three types of glass fibers with different ―OH group concentrations have been prepared in order to compare the interactions between GF and Li-TFSI. It was found that the ―OH group concentrations on the surface of glass fiber have significant effects on interactions between glass fibers and Li-TFSI. Such interactions are crucial for both the antistatic and mechanical performances of the final PP/GF/Li-TFSI composites. The investigation indicated that the GF with high ―OH group concentrations confined the movement of TFSI−, which decreased the antistatic properties of PP/GF/Li-TFSI composites. On the other hand, the GF with low ―OH group concentrations inhibited the absorption of Li-TFSI onto the GF, which also hindered the formation of Li-TFSI conductive pathway. The best antistatic performance of the ternary composites can be achieved at the intermediate ―OH concentrations on the GF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gulrez, S. K. H.; Ali Mohsin, M. E.; Shaikh, H.; Anis, A.; Pulose, A. M.; Yadav, M. K.; Qua, E. H. P.; Al-Zahrani, S. M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014, 35(5), 900–914.
Maki, N.; Nakano, S.; Sasaki, H. Development of a packaging material using non-bleed-type antistatic ionomer. Packag. Technol. Sci. 2004, 17(5), 249–256.
Yoon, S. W.; Lee, S.; Choi, I. S.; Do, Y.; Park, S. Electrical and mechanical properties of polyethylene/MWCNT composites produced by polymerization using Cp2ZrCl2 supported on MWCNTs. Macromol. Res. 2015, 23(8), 713–718.
Dudler, V.; Grob, M. C.; Mérian, D. Percolation network in polyolefins containing antistatic additives imaging by low voltage scanning electron microscopy. Polym. Degrad. Stab. 2000, 68(3), 373–379.
Ding, Y.; Tang, H.; Zhang, X.; Wu, S.; Xiong, R. Effects of 1-n-tetradecyl-3-methylimidazolium bromide on the properties of polypropylene. J. Appl. Polym. Sci. 2008, 109(2), 1138–1142.
Ding, Y.; Tang, H.; Zhang, X.; Wu, S.; Xiong, R. Antistatic ability of 1-n-tetradecyl-3-methylimidazolium bromide and its effects on the structure and properties of polypropylene. Eur. Polym. J. 2008, 44(4), 1247–1251.
Grob, M. C.; Minder, E. Permanent antistatic additives: new developments. Plast. Addit. Compd. 1999, 1(3), 20–26.
Li, C.; Liang, T.; Lu, W.; Tang, C.; Hu, X.; Cao, M.; Liang, J. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Compos. Sci. Technol. 2004, 64(13-14), 2089–2096.
Wang, X.; Liu, L.; Tan, J. Preparation of an ionic-liquid antistatic/photostabilization additive and its effects on polypropylene. J. Vinyl Addit. Technol. 2010, 16(1), 58–63.
Williams, J. B.; Geick, K. S.; Falter, J. A.; Hall, L. K. Optimization of antistatic additives in polypropylene. J. Vinyl Addit. Technol. 1995, 1(4), 282–285.
Zheng, A.; Xu, X.; Xiao, H.; Li, N.; Guan, Y.; Li, S. Antistatic modification of polypropylene by incorporating Tween/ modified Tween. Appl. Surf. Sci. 2012, 258(22), 8861–8866.
Jiang, X.; Bin, Y.; Kikyotani, N.; Matsuo, M. Thermal, electrical and mechanical properties of ultra-high molecular weight polypropylene and carbon filler composites. Polym. J. 2006, 38(5), 419–431.
King, J. A.; Johnson, B. A.; Via, M. D.; Ciarkowski, C. J. Effects of carbon fillers in thermally conductive polypropylene based resins. Polym. Compos. 2010, 31(3), 497–506.
Li, C.; Li, Z.; Zhang, B.; Lu, W.; Tang, Y.; Fang, G.; Hu, X.; Liang, J. Modifying the poly ether ester antistatic agent by carbon nanotubes, the antistatic effect on polypropylene fibers. Prog. Nat. Sci. 2004, 14(9), 805–810.
Moskalyuk, O. A.; Aleshin, A. N.; Tsobkallo, E. S.; Krestinin, A. V.; Yudin, V. E. Electrical conductivity of polypropylene fibers with dispersed carbon fillers. Phys. Solid State. 2012, 54(10), 2122–2127.
Fujita, K.; Murata, K.; Masuda, M.; Nakamura, N.; Ohno, H. Ionic liquids designed for advanced applications in bioelectrochemistry. RSC Adv. 2012, 2(10), 4018–4030.
Tokuda, H.; Hayamizu, K.; Ishii, K.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 2004, 108(42), 16593–16600.
Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 2005, 109(13), 6103–6110.
Tokuda, H.; Ishii, K.; Susan, M. A.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 2006, 110(6), 2833–2839.
Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 2006, 110(39), 19593–19600.
Xing, C.; Zheng, X.; Xu, L.; Jia, J.; Ren, J.; Li, Y. Toward an optically transparent, antielectrostatic, and robust polymer composite: morphology and properties of polycarbonate/ionic liquid composites. Ind. Eng. Chem. Res 2014, 53(11), 4304–4311.
Gu, S.; Zhu, L.; Mercier, C.; Li, Y. Glass fiber networks as an orbit for ions: fabrication of excellent antistatic PP/GF composites with extremely low organic salts loadings. ACS Appl. Mater. Interfaces 2017, 9(21), 18305–18313.
Ishida, H.; Koenig, J. L. Fourier transform infrared spectroscopic study of the structure of silane coupling agent on E-glass fiber. J. Colloid Interface Sci. 1978, 64(3), 565–576.
Herstedt, M.; Smirnov, M.; Johansson, P.; Chami, M.; Grondin, J.; Servant, L.; Lassègues, J. C. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl) imide anion (TFSI-). J. Raman Spectrosc. 2005, 36(8), 762–770.
Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J. C.; Grondin, J.; Servant, L. Spectroscopic and theoretical study of (CF3SO2)2 N-(TFSI-) and (CF3SO2)2NH (HTFSI). J. Phys. Chem. A 1998, 102(19), 3249–3258.
Egashira, M.; Todo, H.; Yoshimoto, N.; Morita, M. Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J. Power Sources 2008, 178(2), 729–735.
Borodin, O.; Smith, D. S. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 2014, 39(4), 1620–1629.
Acknowledgments
This work was financially supported by the National Natural Science Foundation of China (Nos. 21674033 and 51173036).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gu, SL., Liu, HH., Cao, H. et al. Investigations on the interactions between Li-TFSI and glass fibers in the ternary PP/GF/Li-TFSI composites. Chin J Polym Sci 36, 113–118 (2018). https://doi.org/10.1007/s10118-018-2018-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10118-018-2018-x