Skip to main content
Log in

Random binary brush architecture enhances both ionic conductivity and mechanical strength at room temperature

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The ionic conductivity and the mechanical strength are two key factors for the performance of poly(ethylene oxide) (PEO) based polyelectrolytes. However, crystallized PEO suppresses ion conductivity at low temperature and melted PEO has low mechanical strength at high temperature. Here, random binary brush copolymer composed of PEO- and polystyrene (PS)-based side chains is synthesized. PEO crystallinity is suppressed by the introduction of PS brushes. Doping with lithium trifluoromethanesulfonate (LiTf) induces microphase separation. Due to a random arrangement of the brushes, the microphase segregation is incomplete even at high salt loading, which provides both high ionic conductivity and high mechanical strength at room temperature. These results provide opportunities for the design of polymeric electrolytes to be used at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manuel, S. A. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42(1), 21–42.

    Article  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414(6861), 359–367.

    Article  CAS  Google Scholar 

  3. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14(11), 589-589.

    Google Scholar 

  4. Patel, S. N.; Javier, A. E.; Stone, G. M.; Mullin, S. A.; Balsara, N. P. Simultaneous conduction of electronic charge and lithium ions in block copolymers. ACS Nano 2012, 6(2), 1589–1600.

    Article  CAS  Google Scholar 

  5. Yang, L. Y.; Wei, D. X.; Xu, M.; Yao, Y. F.; Chen, Q. Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design. Angew. Chem. Int. Ed. 2014, 53(14), 3631–3635.

    Article  CAS  Google Scholar 

  6. Vöge, A.; Deimede, V.; Paloukis, F.; Neophytides, S. G.; Kallitsis, J. K. Synthesis and properties of aromatic polyethers containing poly(ethylene oxide) side chains as polymer electrolytes for lithium ion batteries. Mater. Chem. Phys. 2014, 148(1-2), 57–66.

    Article  Google Scholar 

  7. Sinha, K.; Maranas, J. Does ion aggregation impact polymer dynamics and conductivity in PEO-based single ion conductors? Macromolecules 2014, 47(8), 2718–2726.

    Article  CAS  Google Scholar 

  8. Gao, S.; Zhong, J.; Xue, G.; Wang, B. Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide. J. Membr. Sci. 2014, 470, 316–322.

    Article  CAS  Google Scholar 

  9. Sun, J.; Stone, G. M.; Balsara, N. P.; Zuckermann, R. N. Structure-conductivity relationship for peptoid-based PEOmimetic polymer electrolytes. Macromolecules 2012, 45(12), 5151–5156.

    Article  CAS  Google Scholar 

  10. Christie, A. M.; Lilley, S. J.; Staunton, E.; Andreev, Y. G.; Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 2005, 433(7021), 50–53.

    Article  CAS  Google Scholar 

  11. Xiao, Q.; Wang, X.; Li, W.; Li, Z.; Zhang, T.; Zhang, H. Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J. Membr. Sci. 2009, 334(1-2), 117–122.

    Article  CAS  Google Scholar 

  12. Song, J. J.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium ion batteries. J. Power Sources 1999, 77(2), 183–197.

    Article  CAS  Google Scholar 

  13. Fontenella, J. J.; Wintergill, M. C.; Calame, J. P.; Andeen, C. G. Electrical relaxation in pure and alkali metal thiocynate complexed with poly(ethylene oxide). Solid State Ionics 1983, 8(4), 333–339.

    Article  Google Scholar 

  14. Chen, H. W.; Chang, F. C. The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 2001, 42(24), 9763–9769.

    Article  CAS  Google Scholar 

  15. Panday, A.; Mullin, S.; Gomez, E. D.; Wanakule, N.; Chen, V. L.; Hexemer, A.; Pople, J.; Balsara, N. P. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 2009, 42(13), 4632–4637

    Article  CAS  Google Scholar 

  16. Singh, M.; Odusanya, O.; Wilmes, G. M.; Eitouni, H. B.; Gomez, E. D.; Patel, A. J.; Chen, V. L.; Park, M. J.; Fragouli, P.; Iatrou, H.; Hadjichristidis, N.; Cookson, D.; Balsara, N. P. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 2007, 40(13), 4578–4585.

    Article  CAS  Google Scholar 

  17. Stone, G. M.; Mullin, S. A.; Teran, A. A.; Hallinan, D. T.; Minor, A. M.; Hexemer, A.; Balsara, N. P. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 2012, 159(3), A222–A227.

    Article  CAS  Google Scholar 

  18. Choi, S.; Cho, B. K. Liquid crystalline and ion-conducting properties of mesogenic dendron-coil-dendron copolymers: characterization of LC phases using normalized conductivity. Soft Matter 2013, 9(16), 4241–4248.

    Article  CAS  Google Scholar 

  19. Inceoglu, S.; Rojas, A. A.; Devaux, D.; Chen, X. C.; Stone, G. M.; Balsara, N. P. Morphology-conductivity relationship of singleion-conducting block copolymer electrolytes for lithium batteries. ACS Macro Lett. 2014, 3(6), 510–514.

    Article  CAS  Google Scholar 

  20. Shi, J.; Vincent, C. A. The effect of molecular weight on cation mobility in polymer electrolytes. Solid State Ionics 1993, 60(1-3), 11–17.

    Article  CAS  Google Scholar 

  21. Money, B. K.; Hariharan, K.; Swenson, J. Glass transition and relaxation processes of nanocomposite polymer electrolytes. J. Phys. Chem. B 2012, 116(26), 7762–7770.

    Article  CAS  Google Scholar 

  22. Xia, Y.; Olsen, B. D.; Kornfield, J. A.; Grubbs, R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J. Am. Chem. Soc. 2009, 131(51), 18525–18532.

    Article  CAS  Google Scholar 

  23. Ruzette, A. V. G.; Soo, P. P.; Sadoway, D. R.; Mayes, A. M. Melt-formable block copolymer electrolytes for lithium rechargeable batteries. J. Electrochem. Soc. 2001, 148(6), A537–A543.

    Article  CAS  Google Scholar 

  24. Gao, L. C.; Zhang, C. L.; Liu, X.; Fan, X. H.; Wu, Y. X.; Chen, X. F.; Shen, Z.; Zhou, Q. F. ABA type liquid crystalline triblock copolymers by combination of living cationic polymerizaition and ATRP: synthesis and self-assembly. Soft Matter 2008, 4(6), 1230–1236.

    Article  CAS  Google Scholar 

  25. Xue, B.; Gao, L.; Jiang, H.; Geng, Z.; Guan, S.; Wang, Y.; Liu, Z.; Jiang, L. High flux CO2 transporting nanochannel fabricated by self-assembly of linear-brush block copolymer. J. Mater. Chem. A 2013, 1(28), 8097–8100.

    Article  CAS  Google Scholar 

  26. Chung, G.; Kornfield, J.; Smith, S. Component dynamics miscible polymer blends: a two-dimensional deuteron NMR investigation. Macromolecules 1994, 27(4), 964–973.

    Article  CAS  Google Scholar 

  27. Chung, G. C.; Kornfield, J.; Smith, S. Compositional dependence of segmental dynamics in a miscible polymer blend. Macromolecules 1994, 27(20), 5729–5741.

    Article  CAS  Google Scholar 

  28. Lodge, T. P.; McLeish, T. C. Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 2000, 33(14), 5278–5284.

    Article  CAS  Google Scholar 

  29. Kumar, S. K.; Colby, R. H.; Anastasiadis, S. H.; Fytas, G. Concentration fluctuation induced dynamic heterogeneities in polymer blends. J. Chem. Phys. 1996, 105(9), 3777–3788.

    Article  CAS  Google Scholar 

  30. Nakamura, I.; Balsara, N. P.; Wang, Z. G. First-order disordered-to-lamellar phase transition in lithium salt-doped block copolymers. ACS Macro Lett. 2013, 2(6), 478–481.

    Article  CAS  Google Scholar 

  31. Nakamura, I.; Balsara, N.; Wang, Z. G. Thermodynamics of ion-containing polymer blends and block copolymers. Phys. Rev. Lett. 2011, 107(19), 198301.

    Article  Google Scholar 

  32. Nakamura, I.; Wang, Z. G. Salt-doped block copolymers: ion distribution, domain spacing and effective ? parameter. Soft Matter 2012, 8(36), 9356–9367.

    Article  CAS  Google Scholar 

  33. Ren, C. L.; Nakamura, I.; Wang, Z. G. Effects of ion-induced cross-linking on the phase behavior in salt-doped polymer blends. Macromolecules 2016, 49(1), 425–431.

    Article  CAS  Google Scholar 

  34. Vachon, C.; Labreche, C.; Vallee, A.; Besner, S.; Dumont, M.; Prud’Homme, J. Microphase separation and conductivity behavior of poly(propylene oxide)-lithium salt electrolytes. Macromolecules 1995, 28(16), 5585–5594.

    Article  CAS  Google Scholar 

  35. Lemai, F.; Prud’homme, J. Ion-ion, short-range interactions in PEO-LiX rubbery electrolytes containing LiSCN, LiN(CF3SO2)2 or Li[CF3SO2N(CH2)3OCH3] as deduced from studies performed on PEO-LiX-KX ternary systems. Electrochim. Acta 2001, 46(9), 1359–1367.

    Article  Google Scholar 

  36. Fetters, L.; Lohse, D.; Colby, R. in "Physical Properties of Polymers Handbook", Springer, 2007, p. 447–454.

    Book  Google Scholar 

  37. Staunton, E.; Christie, A. M.; Martin-Litas, I.; Andreev, Y. G.; Slawin, A. M.; Bruce, P. G. Structure of the poly (ethylene oxide)-zinc chloride complex. Angew. Chem. Int. Ed. 2004, 116(16), 2155–2157.

    Article  Google Scholar 

  38. Matsumiya, Y.; Balsara, N. P.; Kerr, J. B.; Inoue, T.; Watanabe, H. In situ dielectric characterization of poly(ethylene oxide) melts containing lithium perchlorate under steady shear flow. Macromolecules 2004, 37(2), 544–553.

    Article  CAS  Google Scholar 

  39. Goldansaz, H.; Auhl, D.; Goderis, B.; Voleppe, Q.; Fustin, C. A.; Gohy, J. F.; Bailly, C.; van Ruymbeke, E. Transient metallosupramolecular networks built from entangled melts of poly(ethylene oxide). Macromolecules 2015, 48(11), 3746–3755.

    Article  CAS  Google Scholar 

  40. Winter, H. Can the gel point of a cross-linking polymer be detected by the G′-G″ crossover? Polym. Eng. Sci. 1987, 27(22), 1698–1702.

    Article  CAS  Google Scholar 

  41. Zardalidis, G.; Ioannou, E.; Pispas, S.; Floudas, G. Relating structure, viscoelasticity, and local mobility to conductivity in PEO/LiTf electrolytes. Macromolecules 2013, 46(7), 2705–2714.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L.C.G. is grateful for financial support from the National Key Research and Development Program of China (2017YFA0206904, 2017YFA0206900). Q.C. is grateful for start-up fund of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. We thank Dr Ralph Colby at Penn. State Univ. for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long-Cheng Gao or Quan Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, YF., Zhang, ZJ., Liu, C. et al. Random binary brush architecture enhances both ionic conductivity and mechanical strength at room temperature. Chin J Polym Sci 36, 78–84 (2018). https://doi.org/10.1007/s10118-018-2016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2016-z

Keywords

Navigation