Skip to main content
Log in

Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Branch length and density have critical effects on membrane performances; however, it is regarded to be traditionally difficult to investigate the relationship due to the uncontrolled membrane modification methods. In this study, zwitterionic polymer with controlled grafting branch chain length (degree of polymerization) and grafting density (grafting chains per membrane area) was tethered to the microporous polypropylene membrane surface based on the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization technique with click reaction. The modified membranes were tested by filtrating protein dispersion to highlight the correlations of branch chain length and grafting density with the membrane permeation performances. The pure water flux, the flux recovery ratio are positively and significantly, and the irreversible fouling negatively and significantly correlated with grafting density. These results demonstrate that the larger the coverage of the membrane with poly{[2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl) ammonium hydroxide} (PMEDSAH), the higher the pure water flux and the higher the flux recover ratio, and the lower the irreversible fouling, which shows that high grafting density is favorable to fouling reducing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, Q. W.; Xu, Z. K.; Deng, H. T.; Liu, Z. M.; Wu, J.; Seta, P. Surface modification of microporous polypropylene membranes by graft polymerization of N, N-dimethylaminoethyl methacrylate. Chinese J. Polym. Sci. 2004, 22(4), 369–377.

    CAS  Google Scholar 

  2. Jaleh, B.; Parvin, P.; Wanichapichart, P.; Saffar, A. P.; Reyhani, A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl. Surf. Sci. 2010, 257(5), 1655–1659.

    Article  CAS  Google Scholar 

  3. Yang, Q.; Xu, Z. K.; Dai, Z. W.; Wang, J. L.; Ulbricht, M. Surface modification of polypropylene microporous membranes with a novel glycopolymer. Chem. Mater. 2005, 17(11), 3050–3058.

    Article  CAS  Google Scholar 

  4. Liu, Z. M.; Xu, Z. K.; Ulbricht, M. Surface modification of polypropylene microporous membrane by tethering polypeptides. Chinese J. Polym. Sci. 2006, 24(5), 529–538.

    Article  CAS  Google Scholar 

  5. Ma, G. Q.; Zhai, J. J.; Liu, B.; Huang, D. H.; Sheng, J. Plasma modification of polypropylene surfaces and grafting copolymerization of styrene onto polypropylene. Chinese J. Polym. Sci. 2012, 30(3), 423–435.

    Article  CAS  Google Scholar 

  6. Yang, Q.; Tian, J.; Xu, Z. K. Photo-induced graft polymerization of acrylamide on polypropylene membrane surface in the presence of dibenzyl trithiocarbonate. Chinese J. Polym. Sci. 2007, 25(2), 221–226.

    Article  CAS  Google Scholar 

  7. Meng, J. Q.; Yuan, T.; Kurth, C. J.; Shi, Q.; Zhang, Y. F. Synthesis of antifouling nanoporous membranes having tunable nanopores via click chemistry. J. Membr. Sci. 2012, 401-402, 109–117.

    Article  CAS  Google Scholar 

  8. Semsarilar, M.; Ladmiral, V.; Perrier S. Highly branched and hyperbranched glycopolymers via reversible additionfragmentation chain transfer polymerization and click chemistry. Macromolecules 2010, 43(3), 1438–1443.

    Article  CAS  Google Scholar 

  9. Khabibullin, A.; Bhangaonkar, K.; Mahoney, C.; Lu, Z.; Schmitt, M.; Sekizkardes, A. K.; Bockstaller, M. R.; Matyjaszewski, K. Grafting PMMA brushes from alpha-alumina nanoparticles via SI-ATRP. ACS Appl. Mater. Interfaces 2016, 8(8), 5458–5465.

    Article  CAS  Google Scholar 

  10. Wu, X. M.; Wang, L. L.; Wang, Y.; Gu, J. S.; Yu, H. Y. Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry. J. Membr. Sci. 2012, 421-422, 60–68.

    Article  CAS  Google Scholar 

  11. Lalani, R.; Liu, L. Synthesis, characterization, and electrospinning of zwitterionic poly(sulfobetaine methacrylate). Polymer 2011, 52(23), 5344–5354.

    Article  CAS  Google Scholar 

  12. Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 2008, 9(5), 1357–1361.

    Article  CAS  Google Scholar 

  13. Vogler, E. A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interf. Sci. 1998, 74, 69–117.

    Article  CAS  Google Scholar 

  14. Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29(32), 4285–4291.

    Article  CAS  Google Scholar 

  15. Shih, Y. J.; Chang, Y. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir 2010, 26(22), 17286–17294.

    Article  CAS  Google Scholar 

  16. Yu, H.Y.; Kang, Y.; Liu, Y. L.; Mi, B. X. Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: a novel approach to enhance membrane fouling resistance. J. Membr. Sci. 2014, 449, 50–57.

    Article  CAS  Google Scholar 

  17. Ranjan, R.; Brittain, W. J. Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 2007, 40(40), 6217–6223.

    Article  CAS  Google Scholar 

  18. Yadav, S. K.; Yoo, H. J.; Cho, J. W. Click coupled graphene for fabrication of high-performance polymer nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 2013, 51(1), 39–47.

    Article  CAS  Google Scholar 

  19. Barbey, R.; Perrier, S. Synthesis of polystyrene-based hyperbranched polymers by Thiol-Yne chemistry: a detailed investigation. Macromolecules 2014, 47(19), 6697–6705.

    Article  CAS  Google Scholar 

  20. Ying, L.; Yu, W. H.; Kang, E. T.; Neoh, K. G. Functional and surface-active membranes from poly(vinylidene fluoride)-graftpoly(acrylic acid) prepared via RAFT-mediated graft copolymerization. Langmuir 2004, 20(14), 6032–6040.

    Article  CAS  Google Scholar 

  21. Yu, H. Y.; Li, W.; Zhou, J.; Gu, J. S.; Huang, L.; Tang, Z. Q.; Wei, X. W. Thermo-and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization. J. Membr. Sci. 2009, 343(1-2), 82–89.

    Article  CAS  Google Scholar 

  22. Balamurugan, S.; Mandale, A.; Badrinarayanan, S.; Vernekar, S. Photochemical bromination of polyolefin surfaces. Polymer 2001, 42(6), 2501–2512.

    Article  CAS  Google Scholar 

  23. Chanunpanich, N.; Ulman, A.; Strzhemechny, Y.; Schwarz, S.; Janke, A.; Braun, H.; Kraztmuller, T. Surface modification of polyethylene through bromination. Langmuir 1999, 15(6), 2089–2094.

    Article  CAS  Google Scholar 

  24. Song, L.; Zhao, J.; Yang, H.; Jin, J.; Li, X.; Stagnaro, P.; Yin, J. H. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid. Appl. Surf. Sci. 2011, 258(1), 425–430.

    Article  CAS  Google Scholar 

  25. Wu, X. M.; Wang, L. L.; Wang, Y.; Gu, J. S.; Yu, H. Y. Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry. J. Membr. Sci. 2012, 421, 60–68.

    Article  Google Scholar 

  26. Cai, T.; Neoh, K.G.; Kang, E.T. Poly(vinylidene fluoride) graft copolymer membranes with “clickable” surfaces and their functionalization. Macromolecules 2011, 44(11), 4258–4268.

    Article  CAS  Google Scholar 

  27. Rjeb, A.; Letarte, S.; Tajounte, L.; El Idrissi, M. C.; Adnot, A.; Roy, D.; Claire, Y.; Kaloustian, J. Polypropylene natural aging studied by X-ray photoelectron spectroscopy. J. Electron Spectrosco. 2000, 107(3), 221–230.

    Article  CAS  Google Scholar 

  28. Yue, W. W.; Li, H. J.; Xiang, T.; Qin, H.; Sun, S. D.; Zhao, C. S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J. Membr. Sci. 2013, 446, 79–91.

    Article  CAS  Google Scholar 

  29. Zhang, Z.; Chen, S.; Chang, Y.; Jiang, S. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. 2006, 110(22), 10799–10804.

    Article  CAS  Google Scholar 

  30. Li, L.; Yin, Z.; Li, F.; Xiang, T.; Chen, Y.; Zhao, C. Preparation and characterization of poly(acrylonitrile-acrylic acid-N-vinyl pyrrolidinone) terpolymer blended polyethersulfone membranes. J. Membr. Sci. 2010, 349(1), 56–64.

    Article  CAS  Google Scholar 

  31. Wang, L. L.; Wu, J. J.; Zhang, Z. B.; Zhou, J.; He, X. C.; Yu, H. Y.; Gu, J. S. Methoxypolyethylene glycol grafting on polypropylene membrane for enhanced antifouling characteristics: effect of pendant length and grafting density. Sep. Purif. Technol. 2016, 164, 81–88.

    Article  CAS  Google Scholar 

  32. Belfer, S.; Fainshtain, R.; Purinson, Y.; Gilron, J.; Nystrom, M.; Manttari, M. Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. J. Membr. Sci. 2004, 239(1), 55–64.

    Article  CAS  Google Scholar 

  33. le Roux, I.; Krieg, H. M.; Yeates, C. A.; Breytenbach, J. C. Use of chitosan as an antifouling agent in a membrane bioreactor. J. Membr. Sci. 2005, 248(1-2), 127–136.

    Article  Google Scholar 

  34. Yu, H. Y.; He, X. C.; Liu, L. Q.; Gu, J. S.; Wei, X. W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment. Water Res. 2007, 41(20), 4703–4709.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21371008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhou or Hai-Yin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JJ., Zhou, J., Rong, JQ. et al. Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane. Chin J Polym Sci 36, 528–535 (2018). https://doi.org/10.1007/s10118-018-2013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2013-2

Keywords

Navigation