Study on melting and recrystallization of poly(butylene succinate) lamellar crystals via step heating differential scanning calorimetry

Abstract

Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials. However, for polymeric lamellar crystals, the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms, which may result from changes of metastability via recrystallization process. Sometimes, the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm. In this work, we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals. With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior. The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature. For instance, PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon. High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior. Furthermore, the melting endotherms were fitted via the melting kinetics equations. The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range, which is attributed to the different degrees of stabilization. Finally, the mechanism of melting-recrystallization is briefly discussed. We propose that apparent melt-recrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Flory, P.J., Transac. Faraday Soc., 1955, 51: 848

    CAS  Article  Google Scholar 

  2. 2

    Zhang, M.C., Guo, B.H. and Xu, J., Crystals, 2017, 7: 4

    CAS  Article  Google Scholar 

  3. 3

    Tan, S., Su, A., Li, W. and Zhou, E., J. Polym. Sci., Part B: Polym. Phys., 2000, 38: 53

    CAS  Article  Google Scholar 

  4. 4

    Kovacs, A.J., Gonthier, A. and Straupe, C., J. Polym. Sci.: Polym. Symp., 1975, 50: 283

    CAS  Google Scholar 

  5. 5

    Toda, A., Oda, T., Hikosaka, M. and Saruyama, Y., Polymer, 1997, 38: 231

    CAS  Article  Google Scholar 

  6. 6

    Cheng, S.Z.D., “Phase transitions in polymers: the role of metastable states”, Elsevier, Oxford, 2008, p. 122

    Google Scholar 

  7. 7

    Geil, P., J. Polym. Sci. Part A: General Papers, 1964, 2: 3835

    CAS  Google Scholar 

  8. 8

    Zhang, B., Chen, J., Baier, M.C., Mecking, S., Reiter, R., Mülhaupt, R. and Reiter, G., Macromol. Rapid Commun., 2015, 36: 181

    Article  Google Scholar 

  9. 9

    Kojima, M., J. Polym. Sci. Part A-2: Polym. Phys., 1968, 6: 1938

    CAS  Article  Google Scholar 

  10. 10

    Zhou, T.N., Yang, H., Ning, N.Y., Xiang, Y.F., Du, R.N. and Fu, Q., Chinese J. Polym. Sci., 2010, 28(1): 77

    CAS  Article  Google Scholar 

  11. 11

    Hu, D.D., Ye, S.B., Yu, F. and Feng, J.C., Chinese J. Polym. Sci., 2016, 34(3): 344

    CAS  Article  Google Scholar 

  12. 12

    Liu, Y.X., Li, J.F., Zhu, D.S., Chen, E.Q. and Zhang, H.D., Macromolecules, 2009, 42: 2886

    CAS  Article  Google Scholar 

  13. 13

    Zhai, X.M., Wang, W., Ma, Z.P., Wen, X.J., Yuan, F., Tang, X.F. and He, B.L., Macromolecules, 2005, 38: 1717

    CAS  Article  Google Scholar 

  14. 14

    Xia, N., Tang, X., Wen, X., Zhang, G., Zha, X. and Wang, W., Acta Polymerica Sinica (in Chinese), 2011, (9): 1040

    Article  Google Scholar 

  15. 15

    Chen, L., Jiang, J., Zhuravlev, E., Wei, L., Schick, C., Xue, G. and Zhou, D., Macromol. Chem. Phys., 2015, 216: 2211

    CAS  Article  Google Scholar 

  16. 16

    Xu, J., Heck, B., Ye, H.M., Jiang, J., Tang, Y.R., Liu, J., Guo, B.H., Reiter, R., Zhou, D.S. and Reiter, G., Macromolecules, 2016, 49: 2206

    CAS  Article  Google Scholar 

  17. 17

    Xu, K.L., Guo, B.H., Reiter, R., Reiter, G. and Xu, J., Chin. Chem. Lett., 2015, 26: 1105

    CAS  Article  Google Scholar 

  18. 18

    Yoo, E. and Im, S., J. Polym. Sci., Part B: Polym. Phys., 1999, 37: 1357

    CAS  Article  Google Scholar 

  19. 19

    Yasuniwa, M., Tsubakihara, S., Satou, T. and Iura, K., J. Polym. Sci., Part B: Polym. Phys., 2005, 43: 2039

    CAS  Article  Google Scholar 

  20. 20

    Wang, X., Zhou, J. and Li, L., Eur. Polym. J., 2007, 43: 3163

    CAS  Article  Google Scholar 

  21. 21

    Qiu, Z., Komura, M., Ikehara, T. and Nishi, T., Polymer, 2003, 44: 7781

    CAS  Article  Google Scholar 

  22. 22

    Liu, X., Li, C., Zhang, D. and Xiao, Y., J. Polym. Sci., Part B: Polym. Phys., 2006, 44: 900

    CAS  Article  Google Scholar 

  23. 23

    Kampert, W.G. and Sauer, B.B., Polymer, 2001, 42: 8703

    CAS  Article  Google Scholar 

  24. 24

    Sauer, B.B., Kampert, W.G., Blanchard, E.N., Threefoot, S.A. and Hsiao, B.S., Polymer, 2000, 41: 1099

    CAS  Article  Google Scholar 

  25. 25

    Wunderlich, B., J. Macrom. Sci., Part B, 2003, 42: 579

    Article  Google Scholar 

  26. 26

    Lv, Y., Zhu, H., An, M.F., Xu, H.J., Zhang, L. and Wang, Z.B., Chinese J. Polym. Sci., 2016, 34(12): 1510

    CAS  Article  Google Scholar 

  27. 27

    Minakov, A.A., Mordvintsev, D.A. and Schick, C., Polymer, 2004, 45: 3755

    CAS  Article  Google Scholar 

  28. 28

    Minakov, A.A., Mordvintsev, D.A. and Schick, C., Faraday Discuss., 2005, 128: 261

    CAS  Article  Google Scholar 

  29. 29

    Mathot, V., Pyda, M., Pijpers, T., Vanden Poel, G., van de Kerkhof, E., van Herwaarden, S., van Herwaarden, F. and Leenaers, A., Thermochim. Acta, 2011, 522: 36

    CAS  Article  Google Scholar 

  30. 30

    Müller, A.J., Hernández, Z.H., Arnal, M.L. and Sánchez, J.J., Polym. Bull., 1997, 39: 465

    Article  Google Scholar 

  31. 31

    Starck, P., Polym. Int., 1996, 40: 111

    CAS  Article  Google Scholar 

  32. 32

    Adisson, E., Ribeiro, M., Deffieux, A. and Fontanille, M., Polymer, 1992, 33: 4337

    CAS  Article  Google Scholar 

  33. 33

    Arnal, M.L., Balsamo, V., Ronca, G., Sánchez, A., Müller, A.J., Cañizales, E. and de Navarro, C.U., J. Therm. Anal. Calorim., 2000, 59: 451

    CAS  Article  Google Scholar 

  34. 34

    Zhang, Y., Xu, J. and Guo, B.H., Colloid. Surface., A, 2016, 489: 173

    CAS  Article  Google Scholar 

  35. 35

    Zhang, Y., Li, T., Xie, Z., Han, J., Xu, J. and Guo, B.H., Ind. Eng. Chem. Res., 2017, 56: 3937

    CAS  Article  Google Scholar 

  36. 36

    Toda, A., Androsch, R. and Schick, C., Polymer, 2016, 91: 239

    CAS  Article  Google Scholar 

  37. 37

    Furushima, Y., Kumazawa, S., Umetsu, H., Toda, A., Zhuravlev, E. and Schick, C., Polymer, 2017, 109: 307

    CAS  Article  Google Scholar 

  38. 38

    Lauritzen Jr., J.I. and Hoffman, J.D., J. Appl. Phys., 1973, 44: 4340

    CAS  Article  Google Scholar 

  39. 39

    Park, J.W., Kim, D.K. and Im, S.S., Polym. Int., 2002, 51: 239

    CAS  Article  Google Scholar 

  40. 40

    Yeh, G.S., Hosemann, R., Loboda-Čačković, J. and Čačković, H., Polymer, 1976, 17: 309

    CAS  Article  Google Scholar 

  41. 41

    Zheng, G.Q., Jia, Z.H., Li, S.W., Dai, K., Liu, B.C., Zhang, X.L., Mi, L.W., Liu, C.T., Chen, J.B., Shen, C.Y., Peng, X.F. and Li, Q., Polym. Int., 2011, 60: 1434

    CAS  Article  Google Scholar 

  42. 42

    Liu, Q., Li, H., Qiu, Z. and Yan, S., Polym. Int., 2012, 61: 1417

    CAS  Article  Google Scholar 

  43. 43

    Chen, E.Q., Jing, A.J., Weng, X., Huang, P., Lee, S.W., Cheng, S.Z.D., Hsiao, B.S. and Yeh, F.J., Polymer, 2003, 44: 6051

    CAS  Article  Google Scholar 

  44. 44

    Vogel, H., Phys. Z., 1921, 22: 645

    CAS  Google Scholar 

  45. 45

    Fulcher, G.S., J. Am. Ceram. Soc., 1925, 8: 339

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Xu 徐军.

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 21374054), the Sino-German Center for Research Promotion and the National Basic Research Program of China (No. 2014CB932202).

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, Zy., Zhang, M.C., Zhang, Y. et al. Study on melting and recrystallization of poly(butylene succinate) lamellar crystals via step heating differential scanning calorimetry. Chin J Polym Sci 35, 1552–1560 (2017). https://doi.org/10.1007/s10118-017-1986-6

Download citation

Keywords

  • DSC
  • Step heating
  • Poly(butylene succinate)
  • Metastability
  • Melting-recrystallization
  • Melting kinetics