Abstract
Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials. However, for polymeric lamellar crystals, the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms, which may result from changes of metastability via recrystallization process. Sometimes, the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm. In this work, we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals. With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior. The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature. For instance, PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon. High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior. Furthermore, the melting endotherms were fitted via the melting kinetics equations. The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range, which is attributed to the different degrees of stabilization. Finally, the mechanism of melting-recrystallization is briefly discussed. We propose that apparent melt-recrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.
This is a preview of subscription content, access via your institution.
References
- 1
Flory, P.J., Transac. Faraday Soc., 1955, 51: 848
- 2
Zhang, M.C., Guo, B.H. and Xu, J., Crystals, 2017, 7: 4
- 3
Tan, S., Su, A., Li, W. and Zhou, E., J. Polym. Sci., Part B: Polym. Phys., 2000, 38: 53
- 4
Kovacs, A.J., Gonthier, A. and Straupe, C., J. Polym. Sci.: Polym. Symp., 1975, 50: 283
- 5
Toda, A., Oda, T., Hikosaka, M. and Saruyama, Y., Polymer, 1997, 38: 231
- 6
Cheng, S.Z.D., “Phase transitions in polymers: the role of metastable states”, Elsevier, Oxford, 2008, p. 122
- 7
Geil, P., J. Polym. Sci. Part A: General Papers, 1964, 2: 3835
- 8
Zhang, B., Chen, J., Baier, M.C., Mecking, S., Reiter, R., Mülhaupt, R. and Reiter, G., Macromol. Rapid Commun., 2015, 36: 181
- 9
Kojima, M., J. Polym. Sci. Part A-2: Polym. Phys., 1968, 6: 1938
- 10
Zhou, T.N., Yang, H., Ning, N.Y., Xiang, Y.F., Du, R.N. and Fu, Q., Chinese J. Polym. Sci., 2010, 28(1): 77
- 11
Hu, D.D., Ye, S.B., Yu, F. and Feng, J.C., Chinese J. Polym. Sci., 2016, 34(3): 344
- 12
Liu, Y.X., Li, J.F., Zhu, D.S., Chen, E.Q. and Zhang, H.D., Macromolecules, 2009, 42: 2886
- 13
Zhai, X.M., Wang, W., Ma, Z.P., Wen, X.J., Yuan, F., Tang, X.F. and He, B.L., Macromolecules, 2005, 38: 1717
- 14
Xia, N., Tang, X., Wen, X., Zhang, G., Zha, X. and Wang, W., Acta Polymerica Sinica (in Chinese), 2011, (9): 1040
- 15
Chen, L., Jiang, J., Zhuravlev, E., Wei, L., Schick, C., Xue, G. and Zhou, D., Macromol. Chem. Phys., 2015, 216: 2211
- 16
Xu, J., Heck, B., Ye, H.M., Jiang, J., Tang, Y.R., Liu, J., Guo, B.H., Reiter, R., Zhou, D.S. and Reiter, G., Macromolecules, 2016, 49: 2206
- 17
Xu, K.L., Guo, B.H., Reiter, R., Reiter, G. and Xu, J., Chin. Chem. Lett., 2015, 26: 1105
- 18
Yoo, E. and Im, S., J. Polym. Sci., Part B: Polym. Phys., 1999, 37: 1357
- 19
Yasuniwa, M., Tsubakihara, S., Satou, T. and Iura, K., J. Polym. Sci., Part B: Polym. Phys., 2005, 43: 2039
- 20
Wang, X., Zhou, J. and Li, L., Eur. Polym. J., 2007, 43: 3163
- 21
Qiu, Z., Komura, M., Ikehara, T. and Nishi, T., Polymer, 2003, 44: 7781
- 22
Liu, X., Li, C., Zhang, D. and Xiao, Y., J. Polym. Sci., Part B: Polym. Phys., 2006, 44: 900
- 23
Kampert, W.G. and Sauer, B.B., Polymer, 2001, 42: 8703
- 24
Sauer, B.B., Kampert, W.G., Blanchard, E.N., Threefoot, S.A. and Hsiao, B.S., Polymer, 2000, 41: 1099
- 25
Wunderlich, B., J. Macrom. Sci., Part B, 2003, 42: 579
- 26
Lv, Y., Zhu, H., An, M.F., Xu, H.J., Zhang, L. and Wang, Z.B., Chinese J. Polym. Sci., 2016, 34(12): 1510
- 27
Minakov, A.A., Mordvintsev, D.A. and Schick, C., Polymer, 2004, 45: 3755
- 28
Minakov, A.A., Mordvintsev, D.A. and Schick, C., Faraday Discuss., 2005, 128: 261
- 29
Mathot, V., Pyda, M., Pijpers, T., Vanden Poel, G., van de Kerkhof, E., van Herwaarden, S., van Herwaarden, F. and Leenaers, A., Thermochim. Acta, 2011, 522: 36
- 30
Müller, A.J., Hernández, Z.H., Arnal, M.L. and Sánchez, J.J., Polym. Bull., 1997, 39: 465
- 31
Starck, P., Polym. Int., 1996, 40: 111
- 32
Adisson, E., Ribeiro, M., Deffieux, A. and Fontanille, M., Polymer, 1992, 33: 4337
- 33
Arnal, M.L., Balsamo, V., Ronca, G., Sánchez, A., Müller, A.J., Cañizales, E. and de Navarro, C.U., J. Therm. Anal. Calorim., 2000, 59: 451
- 34
Zhang, Y., Xu, J. and Guo, B.H., Colloid. Surface., A, 2016, 489: 173
- 35
Zhang, Y., Li, T., Xie, Z., Han, J., Xu, J. and Guo, B.H., Ind. Eng. Chem. Res., 2017, 56: 3937
- 36
Toda, A., Androsch, R. and Schick, C., Polymer, 2016, 91: 239
- 37
Furushima, Y., Kumazawa, S., Umetsu, H., Toda, A., Zhuravlev, E. and Schick, C., Polymer, 2017, 109: 307
- 38
Lauritzen Jr., J.I. and Hoffman, J.D., J. Appl. Phys., 1973, 44: 4340
- 39
Park, J.W., Kim, D.K. and Im, S.S., Polym. Int., 2002, 51: 239
- 40
Yeh, G.S., Hosemann, R., Loboda-Čačković, J. and Čačković, H., Polymer, 1976, 17: 309
- 41
Zheng, G.Q., Jia, Z.H., Li, S.W., Dai, K., Liu, B.C., Zhang, X.L., Mi, L.W., Liu, C.T., Chen, J.B., Shen, C.Y., Peng, X.F. and Li, Q., Polym. Int., 2011, 60: 1434
- 42
Liu, Q., Li, H., Qiu, Z. and Yan, S., Polym. Int., 2012, 61: 1417
- 43
Chen, E.Q., Jing, A.J., Weng, X., Huang, P., Lee, S.W., Cheng, S.Z.D., Hsiao, B.S. and Yeh, F.J., Polymer, 2003, 44: 6051
- 44
Vogel, H., Phys. Z., 1921, 22: 645
- 45
Fulcher, G.S., J. Am. Ceram. Soc., 1925, 8: 339
Author information
Affiliations
Corresponding author
Additional information
This work was financially supported by the National Natural Science Foundation of China (No. 21374054), the Sino-German Center for Research Promotion and the National Basic Research Program of China (No. 2014CB932202).
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Lv, Zy., Zhang, M.C., Zhang, Y. et al. Study on melting and recrystallization of poly(butylene succinate) lamellar crystals via step heating differential scanning calorimetry. Chin J Polym Sci 35, 1552–1560 (2017). https://doi.org/10.1007/s10118-017-1986-6
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- DSC
- Step heating
- Poly(butylene succinate)
- Metastability
- Melting-recrystallization
- Melting kinetics