Chinese Journal of Polymer Science

, Volume 35, Issue 7, pp 846–856 | Cite as

Polysulfone membranes via thermally induced phase separation

  • Hong-qing Liang
  • Hao-nan Li
  • Hao-hao Yu
  • Yong-ting Zhou
  • Zhi-kang Xu (徐志康)Email author


Polysulfone (PSF) membranes have gained great attention in the fields of ultrafiltration, microfiltration, and thin film composite membranes for nanofiltration or reverse osmosis. For the first time, it is proposed to fabricate PSF membranes via thermally induced phase separation (TIPS) process using diphenyl sulfone (DPSO2) and polyethylene glycol (PEG) as mixed diluent. DPSO2 is chosen as a crystallizable diluent, while PEG is considered in terms of molecular weight (M w) and dosage. We systematically investigate the interactions between PSF, DPSO2 and PEG based on the simulation calculations and solubility parameter theory. It is inferred that DPSO2 has an excellent compatibility with PSF, and the addition of PEG results in the ternary system thermodynamically less stable and then facilitates its liquid-liquid (L-L) phase separation. SEM images indicate that cellular-like pores are obvious throughout the membrane when the PEG content in the mixed diluent is 25 wt%−35 wt%. We can facilely manipulate the pore size, water flux and mechanical properties of PSF membranes with the dosage of PEG-200, the M w of PEG or the cooling rate. The successful application of TIPS can provide a new approach for structure manipulation and performance enhancement of PSF membranes.


Polysulfone membrane Pore structure Diphenyl sulfone Polyethylene glycol Thermally induced phase separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2017_1943_MOESM1_ESM.pdf (1.3 mb)
Polysulfone Membranes via Thermally Induced Phase Separation


  1. 1.
    Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M., Nature, 2008, 452(7185): 301CrossRefGoogle Scholar
  2. 2.
    Elimelech, M. and Phillip, W.A., Science, 2011, 333(6043): 712CrossRefGoogle Scholar
  3. 3.
    Guillen, G.R., Pan, Y., Li, M. and Hoek, E.M.V., Ind. Eng. Chem. Res., 2011, 50(7): 3798CrossRefGoogle Scholar
  4. 4.
    Yang, Y., Zhang, H., Wang, P., Zheng, Q. and Li, J., J. Membr. Sci., 2007, 288(1-2): 231CrossRefGoogle Scholar
  5. 5.
    Chakrabarty, B., Ghoshal, A.K. and Purkait, M.K., J. Membr. Sci., 2008, 309(1-2): 209CrossRefGoogle Scholar
  6. 6.
    Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M., J. Membr. Sci., 2011, 367(1-2): 340CrossRefGoogle Scholar
  7. 7.
    Zhao, S., Wang, Z., Wei, X., Zhao, B., Wang, J., Yang, S. and Wang, S., J. Membr. Sci., 2011, 385-386: 251CrossRefGoogle Scholar
  8. 8.
    Zhao, S., Wang, Z., Wei, X., Zhao, B., Wang, J., Yang, S. and Wang, S., Ind. Eng. Chem. Res., 2012, 51(12): 4661CrossRefGoogle Scholar
  9. 9.
    Shah, P. and Murthy, C.N., J. Membr. Sci., 2013, 437: 90CrossRefGoogle Scholar
  10. 10.
    ElSherbiny, I.M.A., Ghannam, R., Khalil, A.S.G. and Ulbricht, M., J. Membr. Sci., 2015, 493: 782CrossRefGoogle Scholar
  11. 11.
    Tian, M., Yin, Y., Yang, C., Zhao, B., Song, J., Liu, J., Li, X.M. and He, T., Desalination, 2015, 369: 105CrossRefGoogle Scholar
  12. 12.
    Wei, J., Qiu, C., Tang, C.Y., Wang, R. and Fane, A.G., J. Membr. Sci., 2011, 372(1-2): 292CrossRefGoogle Scholar
  13. 13.
    Kim, J.F., Kim, J.H., Lee, Y.M. and Drioli, E., AIChE J., 2016, 62(2): 461CrossRefGoogle Scholar
  14. 14.
    van de Witte, P., Dijkstra, P.J., van den Berg, J.W.A. and Feijen, J., J. Membr. Sci., 1996, 117(1-2): 1CrossRefGoogle Scholar
  15. 15.
    Funk, C., Hanks, P., Kaczorowski, K. and Lloyd, D., J. Porous Mater., 2009, 16(4): 453CrossRefGoogle Scholar
  16. 16.
    Nam, Y.S. and Park, T.G., J. Biomed. Mater. Res., 1999, 47(1): 8CrossRefGoogle Scholar
  17. 17.
    Nam, Y.S. and Park, T.G., Biomaterials, 1999, 20(19): 1783CrossRefGoogle Scholar
  18. 18.
    Sauter, T., Luetzow, K., Schossig, M., Kosmella, H., Weigel, T., Kratz, K. and Lendlein, A., Adv. Eng. Mater., 2012, 14(9): 818CrossRefGoogle Scholar
  19. 19.
    Wu, Q.Y., Wan, L.S. and Xu, Z.K., Polymer, 2013, 54(1): 284CrossRefGoogle Scholar
  20. 20.
    Lloyd, D.R., Kinzer, K.E. and Tseng, H.S., J. Membr. Sci., 1990, 52(3): 239CrossRefGoogle Scholar
  21. 21.
    Lloyd, D.R., Kim, S.S. and Kinzer, K.E., J. Membr. Sci., 1991, 64(1-2): 1CrossRefGoogle Scholar
  22. 22.
    Zhang, C., Bai, Y., Sun, Y., Gu, J. and Xu, Y., J. Membr. Sci., 2010, 365(1-2): 216CrossRefGoogle Scholar
  23. 23.
    Yoon, J., Lesser, A.J. and McCarthy, T.J., Macromolecules, 2009, 42(22): 8827CrossRefGoogle Scholar
  24. 24.
    Roh, S.C., Park, M.J., Yoo, S.H. and Kim, C.K., J. Membr. Sci., 2012, 411-412: 201CrossRefGoogle Scholar
  25. 25.
    Matsuyama, H., Okafuji, H., Maki, T., Teramoto, M. and Kubota, N., J. Membr. Sci., 2003, 223(1-2): 119CrossRefGoogle Scholar
  26. 26.
    Matsuyama, H., Berghmans, S., Batarseh, M.T. and Lloyd, D.R., J. Membr. Sci., 1998, 142(1): 27CrossRefGoogle Scholar
  27. 27.
    Luo, B., Li, Z., Zhang, J. and Wang, X., Desalination, 2008, 233(1-3): 19CrossRefGoogle Scholar
  28. 28.
    Yave, W., Quijada, R., Ulbricht, M. and Benavente, R., Polymer, 2005, 46(25): 11582CrossRefGoogle Scholar
  29. 29.
    Liang, H.Q., Wu, Q.Y., Wan, L.S., Huang, X.J. and Xu, Z.K., J. Membr. Sci., 2013, 446(11): 482CrossRefGoogle Scholar
  30. 30.
    Liang, H.Q., Wu, Q.Y., Wan, L.S., Huang, X.J. and Xu, Z.K., J. Membr. Sci., 2014, 465(13): 56CrossRefGoogle Scholar
  31. 31.
    Cui, Z., Hassankiadeh, N.T., Lee, S.Y., Lee, J.M., Woo, K.T., Sanguineti, A., Arcella, V., Lee, Y.M. and Drioli, E., J. Membr. Sci., 2013, 444: 223CrossRefGoogle Scholar
  32. 32.
    Liang, H.Q., Wan, L.S. and Xu, Z.K., Chinese J. Polym. Sci., 2016, 34(12): 1423CrossRefGoogle Scholar
  33. 33.
    Tanaka, T. and Lloyd, D.R., J. Membr. Sci., 2004, 238(1-2): 65CrossRefGoogle Scholar
  34. 34.
    Wu, Q.Y., Liu, B.T., Li, M., Wan, L.S. and Xu, Z.K., J. Membr. Sci., 2013, 437: 227CrossRefGoogle Scholar
  35. 35.
    Wu, Q.Y., Wan, L.S. and Xu, Z.K., J. Membr. Sci., 2012, 409: 355CrossRefGoogle Scholar
  36. 36.
    Wu, Q.Y., Liang, H.Q., Li, M., Liu, B.T. and Xu, Z.K., Chinese J. Polym. Sci., 2016, 34(1): 23CrossRefGoogle Scholar
  37. 37.
    Shibutani, T., Kitaura, T., Ohmukai, Y., Maruyama, T., Nakatsuka, S., Watabe, T. and Matsuyama, H., J. Membr. Sci., 2011, 376(1-2): 102CrossRefGoogle Scholar
  38. 38.
    Matsuyama, H., Ohga, K., Maki, T., Tearamoto, M. and Nakatsuka, S., J. Appl. Polym. Sci., 2003, 89(14): 3951CrossRefGoogle Scholar
  39. 39.
    Zhao, Y., Zhang, X., Zhang, W., Xu, H., Xie, W., Du, J. and Liu, Y., J. Phys. Chem. A, 2016, 120(5): 765CrossRefGoogle Scholar
  40. 40.
    Vanegas, M.E., Quijada, R. and Serafini, D., Polymer, 2009, 50(9): 2081CrossRefGoogle Scholar
  41. 41.
    Wu, Q.Y., Chen, X.N., Wan, L.S. and Xu, Z.K., J. Phys. Chem. B, 2012, 116(28): 8321CrossRefGoogle Scholar
  42. 42.
    Tang, Y.H., He, Y.D. and Wang, X.L., J. Membr. Sci., 2012, 409-410: 164CrossRefGoogle Scholar
  43. 43.
    Kim, J.H. and Lee, K.H., J. Membr. Sci., 1998, 138(2): 153CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hong-qing Liang
    • 1
    • 2
  • Hao-nan Li
    • 1
    • 2
  • Hao-hao Yu
    • 1
    • 2
  • Yong-ting Zhou
    • 1
    • 2
  • Zhi-kang Xu (徐志康)
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Macromolecular Synthesis and Functionalization of the Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations