Advertisement

Chinese Journal of Polymer Science

, Volume 35, Issue 6, pp 700–712 | Cite as

Spectral insights into microdynamics of thermoresponsive polymers from the perspective of two-dimensional correlation spectroscopy

Feature Article

Abstract

Generalized two-dimensional correlation spectroscopy (2DCOS) and its derivate technique, perturbation correlation moving window (PCMW), have found great potential in studying a series of physico-chemical phenomena in stimuli-responsive polymeric systems. By spreading peaks along a second dimension, 2DCOS can significantly enhance spectral resolution and discern the sequence of group dynamics applicable to various external perturbation-induced spectroscopic changes, especially in infrared (IR), near-infrared (NIR) and Raman spectroscopy. On the basis of 2DCOS synchronous power spectra changing, PCMW proves to be a powerful tool to monitor complicated spectral variations and to find transition points and ranges. This article reviews the recent work of our research group in the application of 2DCOS and PCMW in thermoresponsive polymers, mainly focused on liquid crystalline polymers and lower critical solution temperature (LCST)-type polymers. Details of group motions and chain conformational changes upon temperature perturbation can thus be elucidated at the molecular level, which contribute to the understanding of their phase transition nature.

Keywords

Thermoresponsive polymers Phase transition Two-dimensional correlation spectroscopy Perturbation correlation moving window 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noda, I., Bull. Am. Phys. Soc., 1986, 31: 520Google Scholar
  2. 2.
    Noda, I., Appl. Spectrosc., 1993, 47(9): 1329CrossRefGoogle Scholar
  3. 3.
    Noda, I. and Ozaki, Y., “Two-dimensional correlation spectroscopy: Applications in vibrational and optical spectroscopy”, Chichester: Wiley, 2004CrossRefGoogle Scholar
  4. 4.
    Park, Y., Noda, I. and Jung, Y.M., J. Mol. Struct., 2016, 1124: 11CrossRefGoogle Scholar
  5. 5.
    Czarnecki, M.A., Appl. Spectrosc. Rev., 2011, 46(1): 67CrossRefGoogle Scholar
  6. 6.
    Dluhy, R., Shanmukh, S. and Morita, S.I., Surf. Interface Anal., 2006, 38(11): 1481CrossRefGoogle Scholar
  7. 7.
    You, Z., Zhuo, L., Yang, X., Hong, H., Liu, Z., Gong, Z. and Cheng, F., Appl. Spectrosc. Rev., 2015, 50(10): 840CrossRefGoogle Scholar
  8. 8.
    Shashilov, V.A. and Lednev, I.K., J. Raman Spectrosc., 2009, 40(12): 1749CrossRefGoogle Scholar
  9. 9.
    Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. and Minko, S., Nat. Mater., 2010, 9(2): 101CrossRefGoogle Scholar
  10. 10.
    Roy, D., Brooks, W.L.A. and Sumerlin, B.S., Chem. Soc. Rev., 2013, 42(17): 7214CrossRefGoogle Scholar
  11. 11.
    Morita, S., Shinzawa, H., Tsenkova, R., Noda, I. and Ozaki, Y., J. Mol. Struct., 2006, 799(1): 111CrossRefGoogle Scholar
  12. 12.
    Czarnik-Matusewicz, B., Pilorz, S., Ashton, L. and Blanch, E.W., J. Mol. Struct., 2006, 799(1-3): 253CrossRefGoogle Scholar
  13. 13.
    Sun, S., Tang, H. and Wu, P., Phys. Chem. Chem. Phys., 2009, 11(35): 7611CrossRefGoogle Scholar
  14. 14.
    Sun, S.T., Tang, H., Wu, P.Y. and Wan, X.H., Phys. Chem. Chem. Phys., 2009, 11(42): 9861CrossRefGoogle Scholar
  15. 15.
    Thomas, M. and Richardson, H.H., Vib. Spectrosc., 2000, 24(1): 137CrossRefGoogle Scholar
  16. 16.
    Morita, S., Shinzawa, H., Noda, I. and Ozaki, Y., Appl. Spectrosc., 2006, 60(4): 398CrossRefGoogle Scholar
  17. 17.
    Wang, M.Y., Sun, S.T. and Wu, P.Y., Appl. Spectrosc., 2010, 64(12): 1396CrossRefGoogle Scholar
  18. 18.
    Czarnecki, M.A., Okretic, S. and Siesler, H.W., J. Phys. Chem. B, 1997, 101(3): 374CrossRefGoogle Scholar
  19. 19.
    Czarnecki, M.A., Okretic, S. and Siesler, H.W., Vib. Spectrosc., 1998, 18(1): 17CrossRefGoogle Scholar
  20. 20.
    Chen, X.F., Shen, Z., Wan, X.H., Fan, X.H., Chen, E.Q., Ma, Y. and Zhou, Q.F., Chem. Soc. Rev., 2010, 39(8): 3072CrossRefGoogle Scholar
  21. 21.
    Shen, Y., Chen, E.Q., Ye, C., Zhang, H.L., Wu, P.Y., Noda, I. and Zhou, Q.F., J. Phys. Chem. B, 2005, 109(13): 6089CrossRefGoogle Scholar
  22. 22.
    Jing, Y., Tang, H. and Wu, P., Polym. Chem., 2013, 4(24): 5768CrossRefGoogle Scholar
  23. 23.
    Sun, S.T., Tang, H. and Wu, P.Y., J. Phys. Chem. B, 2010, 114(10): 3439CrossRefGoogle Scholar
  24. 24.
    Tang, H., Sun, S.T., Wu, J.W., Wu, P.Y. and Wan, X.H., Polymer, 2010, 51(23): 5482CrossRefGoogle Scholar
  25. 25.
    Schild, H.G., Prog. Polym. Sci., 1992, 17(2): 163CrossRefGoogle Scholar
  26. 26.
    Sun, B., Lin, Y., Wu, P. and Siesler, H.W., Macromolecules, 2008, 41(4): 1512CrossRefGoogle Scholar
  27. 27.
    Lai, H.J. and Wu, P.Y., Polymer, 2010, 51(6): 1404CrossRefGoogle Scholar
  28. 28.
    Sun, S.T. and Wu, P.Y., Macromolecules, 2010, 43(22): 9501CrossRefGoogle Scholar
  29. 29.
    Wang, Z.W. and Wu, P.Y., RSC Adv., 2012, 2(18): 7099CrossRefGoogle Scholar
  30. 30.
    Sun, S. and Wu, P., Macromolecules, 2013, 46(1): 236CrossRefGoogle Scholar
  31. 31.
    Zhang, B., Tang, H. and Wu, P., Macromolecules, 2014, 47(14): 4728CrossRefGoogle Scholar
  32. 32.
    Gu, W.X. and Wu, P.Y., Anal. Sci., 2007, 23(7): 823CrossRefGoogle Scholar
  33. 33.
    Guo, Y., Sun, B. and Wu, P., Langmuir, 2008, 24(10): 5521CrossRefGoogle Scholar
  34. 34.
    Sun, B.J., Lai, H.J. and Wu, P.Y., J. Phys. Chem. B, 2011, 115(6): 1335CrossRefGoogle Scholar
  35. 35.
    Sun, S. and Wu, P., J. Phys. Chem. B, 2011, 115(40): 11609CrossRefGoogle Scholar
  36. 36.
    Li, T., Tang, H. and Wu, P., Langmuir, 2015, 31(24): 6870CrossRefGoogle Scholar
  37. 37.
    Li, W. and Wu, P., Polym. Chem., 2014, 5(19): 5578CrossRefGoogle Scholar
  38. 38.
    Wang, G. and Wu, P., Soft Matter, 2015, 11(26): 5253CrossRefGoogle Scholar
  39. 39.
    Lai, H.J., Chen, G.T., Wu, P.Y. and Li, Z.C., Soft Matter, 2012, 8(9): 2662CrossRefGoogle Scholar
  40. 40.
    Sun, S.T., Zhang, W.D., Zhang, W., Wu, P.Y. and Zhu, X.L., Soft Matter, 2012, 8(14): 3980CrossRefGoogle Scholar
  41. 41.
    Wang, Z., Lai, H. and Wu, P., Soft Matter, 2012, 8(46): 11644CrossRefGoogle Scholar
  42. 42.
    Wang, Q., Tang, H. and Wu, P., Langmuir, 2015, 31(23): 6497CrossRefGoogle Scholar
  43. 43.
    Dai, Y. and Wu, P., Phys. Chem. Chem. Phys., 2016, 18(31): 21360CrossRefGoogle Scholar
  44. 44.
    Wang, Q., Tang, H. and Wu, P., J. Polym. Sci., Part B: Polym. Phys., 2016, 54(3): 385CrossRefGoogle Scholar
  45. 45.
    Jia, L., Guo, C., Yang, L., Xiang, J., Tang, Y., Liu, C. and Liu, H., J. Colloid Interf. Sci., 2010, 345(2): 332CrossRefGoogle Scholar
  46. 46.
    Ye, Z., Li, Y., An, Z. and Wu, P., Langmuir, 2016, 32(26): 6691CrossRefGoogle Scholar
  47. 47.
    Li, T., Tang, H. and Wu, P., Soft Matter, 2015, 11(15): 3046CrossRefGoogle Scholar
  48. 48.
    Wang, G. and Wu, P., Langmuir, 2016, 32(15): 3728CrossRefGoogle Scholar
  49. 49.
    Wang, G. and Wu, P., Soft Matter, 2016, 12(3): 925CrossRefGoogle Scholar
  50. 50.
    Motornov, M., Roiter, Y., Tokarev, I. and Minko, S., Prog. Polym. Sci., 2010, 35(1-2): 174CrossRefGoogle Scholar
  51. 51.
    Sun, S., Hu, J., Tang, H. and Wu, P., J. Phys. Chem. B, 2010, 114(30): 9761CrossRefGoogle Scholar
  52. 52.
    Sun, S., Hu, J., Tang, H. and Wu, P., Phys. Chem. Chem. Phys., 2011, 13(11): 5061CrossRefGoogle Scholar
  53. 53.
    Hou, L., Ma, K., An, Z. and Wu, P., Macromolecules, 2014, 47(3): 1144CrossRefGoogle Scholar
  54. 54.
    Zhang, B., Sun, S. and Wu, P., Soft Matter, 2013, 9(5): 1678CrossRefGoogle Scholar
  55. 55.
    Zhou, Y., Tang, H. and Wu, P., Phys. Chem. Chem. Phys., 2015, 17(38): 25525CrossRefGoogle Scholar
  56. 56.
    Hou, L. and Wu, P., RSC Adv., 2014, 4(74): 39231CrossRefGoogle Scholar
  57. 57.
    Sun, W. and Wu, P., Phys. Chem. Chem. Phys., 2017, 19(1): 127CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension MaterialsDonghua UniversityShanghaiChina
  2. 2.State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced MaterialsFudan UniversityShanghaiChina

Personalised recommendations