Chinese Journal of Polymer Science

, Volume 35, Issue 6, pp 773–781 | Cite as

Can classic Avrami theory describe the isothermal crystallization kinetics for stereocomplex poly(lactic acid)?

Papers
  • 125 Downloads

Abstract

Classic Avrami model and its modifications have found diverse applications in describing the thermal and phase behaviors of inorganic metals and organic polymers. The direct introduction of classic Avrami equation to offer quantitative analyses of crystallization kinetic parameters for enantiomeric poly(lactic acid) (PLA) blends may, however, lead to contradictory conclusions. As revealed by this study, during the characterization of isothermal melt and cold crystallization for stereocomplex PLA containing equal-weight poly(L-lactic acid) and poly(D-lactic acid), the kinetic parameters yielded by Avrami equation are not in line with the classic crystallization hypotheses or the direct morphological observations. The underlying mechanisms, to some extent, lie in the generation of stereocomplex crystals (SCs) during the cooling/heating which affects the subsequent crystallization dynamics. The huge gap between the melting enthalpies of 100% crystalline SCs (142 J/g) and homo-crystals (HCs, 93 J/g) is most likely responsible for the confusing kinetic parameters acquired from the deduction of Avrami equation, which is based on the integration of enthalpies as a function of crystallization time. This prompts for great care that the classic Avrami equation is not applicable to accurately describe the crystallization kinetics of stereocomplex PLA, given the generation of SCs prior to crystallization and the coexistence of HCs and SCs during crystallization.

Keywords

Poly(lactic acid) Stereocomplex crystallization Crystallization kinetics Classic Avrami theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are deeply indebted to Dr. Patrick Baker from the Department of Molecular Biology and Biotechnology, University of Sheffield for his kind help during the X-ray measurements.

References

  1. 1.
    Xu, H., Liu, C.Y., Chen, C., Hsiao, B.S., Zhong, G.J. and Li, Z.M., Biopolymers, 2012, 97: 825CrossRefGoogle Scholar
  2. 2.
    Xie, L., Xu, H., Niu, B., Ji, X., Chen, J., Li, Z.M., Hsiao, B.S. and Zhong, G.J., Biomacromolecules, 2014, 15: 4054CrossRefGoogle Scholar
  3. 3.
    Xu, H., Xie, L., Chen, J.B., Jiang, X., Hsiao, B.S., Zhong, G.J., Fu, Q. and Li, Z.M., Mater. Horiz., 2014, 1: 546CrossRefGoogle Scholar
  4. 4.
    Sun, X., Tokuda, A., Oji, Y., Nakatani, T., Tsuji, H., Ozaki, Y., Yan, S. and Takahashi, I., Macromolecules, 2012, 45: 2485CrossRefGoogle Scholar
  5. 5.
    Ikada, Y., Jamshidi, K., Tsuji, H. and Hyon, S.H., Macromolecules, 1987, 20: 904CrossRefGoogle Scholar
  6. 6.
    Zhang, J., Duan, Y., Sato, H., Tsuji, H., Noda, I., Yan, S. and Ozaki, Y., Macromolecules, 2005, 38: 8012CrossRefGoogle Scholar
  7. 7.
    Tsuji, H., Hosokawa, M. and Sakamoto, Y., ACS Macro Lett., 2012, 1: 687CrossRefGoogle Scholar
  8. 8.
    Sveinbjörnsson, B.R., Miyake, G.M., El-Batta, A. and Grubbs, R.H., ACS Macro Lett., 2014, 3: 26CrossRefGoogle Scholar
  9. 9.
    Sun, Y. and He, C., ACS Macro Lett., 2012, 1: 709CrossRefGoogle Scholar
  10. 10.
    Andersson, S.R., Hakkarainen, M. and Albertsson, A.C., Polymer, 2013, 54: 4105CrossRefGoogle Scholar
  11. 11.
    Andersson, S.R., Hakkarainen, M., Inkinen, S., Södergård, A. and Albertsson, A.C., Biomacromolecules, 2010, 11: 1067CrossRefGoogle Scholar
  12. 12.
    Andersson, S.R., Hakkarainen, M., Inkinen, S., Södergård, A. and Albertsson, A.C., Biomacromolecules, 2012, 13: 1212CrossRefGoogle Scholar
  13. 13.
    Inkinen, S., Hakkarainen, M., Albertsson, A.C. and Södergård, A., Biomacromolecules, 2011, 12: 523CrossRefGoogle Scholar
  14. 14.
    Sugai, N., Yamamoto, T. and Tezuka, Y., ACS Macro Lett., 2012, 1: 902CrossRefGoogle Scholar
  15. 15.
    Xu, H., Wu, D., Yang, X., Xie, L. and Hakkarainen, M., Macromolecules, 2015, 48: 2127CrossRefGoogle Scholar
  16. 16.
    Rahman, N., Kawai, T., Matsuba, G., Nishida, K., Kanaya, T., Watanabe, H., Okamoto, H., Kato, M., Usuki, A., Matsuda, M., Nakajima, K. and Honma, N., Macromolecules, 2009, 42: 4739CrossRefGoogle Scholar
  17. 17.
    Lotz, B.A., ACS Macro Lett., 2015, 4: 602CrossRefGoogle Scholar
  18. 18.
    Zhang, P., Tian, R., Na, B., Lv, R. and Liu, Q., Polymer, 2015, 60: 221CrossRefGoogle Scholar
  19. 19.
    Bouapao, L. and Tsuji, H., Macromol. Chem. Phys., 2009, 210: 993CrossRefGoogle Scholar
  20. 20.
    He, Y., Xu, Y., Wei, J., Fan, Z. and Li, S., Polymer, 2008, 49: 5670CrossRefGoogle Scholar
  21. 21.
    Marubayashi, H., Nobuoka, T., Iwamoto, S., Takemura, A. and Iwata, T., ACS Macro Lett., 2013, 2: 355CrossRefGoogle Scholar
  22. 22.
    Schmidt, S.C. and Hillmyer, M.A., J. Polym. Sci., Part B: Polym. Phys., 2001, 39: 300CrossRefGoogle Scholar
  23. 23.
    Anderson, K.S. and Hillmyer, M.A., Polymer, 2006, 47: 2030CrossRefGoogle Scholar
  24. 24.
    Bao, R.Y., Yang, W., Jiang, W.R., Liu, Z.Y., Xie, B.H. and Yang, M.B., J. Phys. Chem. B, 2013, 117: 3667CrossRefGoogle Scholar
  25. 25.
    Saeidlou, S., Huneault, M.A., Li, H. and Park, C.B., Polymer, 2013, 54: 5762CrossRefGoogle Scholar
  26. 26.
    Wei, X.F., Bao, R.Y., Cao, Z.Q., Zhang, L.Q., Liu, Z.Y., Yang, W., Xie, B.H. and Yang, M.B., Colloid Polym. Sci., 2014, 292: 163CrossRefGoogle Scholar
  27. 27.
    Wei, X.F., Bao, R.Y., Cao, Z.Q., Yang, W., Xie, B.H. and Yang, M.B., Macromolecules, 2014, 47: 1439CrossRefGoogle Scholar
  28. 28.
    Na, B., Zhu, J., Lv, R., Ju, Y., Tian, R. and Chen, B., Macromolecules, 2014, 47: 347CrossRefGoogle Scholar
  29. 29.
    Saeidlou, S., Huneault, M.A., Li, H., Sammut, P. and Park, C.B., Polymer, 2012, 53: 5816CrossRefGoogle Scholar
  30. 30.
    Xu, H., Feng, Z.X., Xie, L. and Hakkarainen, M., ACS Sustainable Chem. Eng., 2016, 4: 334CrossRefGoogle Scholar
  31. 31.
    Xu, H., Hua, G., Odelius, K. and Hakkarainen, M., Macromol. Chem. Phys., 2016, 217: 2567CrossRefGoogle Scholar
  32. 32.
    Pradell, T., Crespo, D., Clavaguera, N. and Clavaguera-Mora, M., J. Phys.: Condens. Matter, 1998, 10: 3833Google Scholar
  33. 33.
    Cheng, S.Z. and Wunderlich, B., Macromolecules, 1988, 21: 3327CrossRefGoogle Scholar
  34. 34.
    Xu, H., Xie, L., Jiang, X., Li, X.J., Li, Y., Zhang, Z.J., Zhong, G.J. and Li, Z.M., J. Phys. Chem. B, 2014, 118: 812CrossRefGoogle Scholar
  35. 35.
    Xu, H., Xie, L., Jiang, X., Hakkarainen, M., Chen, J.B., Zhong, G.J. and Li, Z.M., Biomacromolecules, 2014, 15: 1676CrossRefGoogle Scholar
  36. 36.
    Mano, J.F., Wang, Y., Viana, J.C., Denchev, Z. and Oliveira, M.J., Macromol. Mater. Eng., 2004, 289: 910CrossRefGoogle Scholar
  37. 37.
    Xu, H., Zhong, G.J., Fu, Q., Lei, J., Jiang, W., Hsiao, B.S. and Li, Z.M., ACS Appl. Mater. Interfaces, 2012, 4: 6774CrossRefGoogle Scholar
  38. 38.
    Xu, H., Xie, L. and Hakkarainen, M., ACS Sustainable Chem. Eng., 2015, 3: 1443CrossRefGoogle Scholar
  39. 39.
    Xu, H., Yang, X., Xie, L. and Hakkarainen, M., Biomacromolecules, 2016, 17: 985CrossRefGoogle Scholar
  40. 40.
    Xu, H., Xie, L., Wu, D. and Hakkarainen, M., ACS Sustainable Chem. Eng., 2016, 4: 2211CrossRefGoogle Scholar
  41. 41.
    Zhang, J., Sato, H., Tsuji, H., Noda, I. and Ozaki, Y., Macromolecules, 2005, 38: 1822CrossRefGoogle Scholar
  42. 42.
    Pan, P., Yang, J., Shan, G., Bao, Y., Weng, Z., Cao, A., Yazawa, K. and Inoue, Y., Macromolecules, 2012, 45: 189CrossRefGoogle Scholar
  43. 43.
    Fischer, E., Sterzel, H.J. and Wegner, G., Colloid Polym. Sci., 1973, 251: 980Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Polymer and Processing, College of Materials and MetallurgyGuizhou UniversityGuiyangChina
  2. 2.College of Environment and ResourceSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations