Advertisement

Chinese Journal of Polymer Science

, Volume 35, Issue 6, pp 713–720 | Cite as

Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles

  • Yu-man Liu
  • Qiang Li (李强)
  • Huan-huan Liu
  • Hui-hui Cheng
  • Jian Yu
  • Zhao-xia Guo (郭朝霞)
Papers

Abstract

Antibacterial thermoplastic polyurethane (TPU) electrospun fiber mats were prepared by adsorption of Ag nanoparticles (Ag NPs) onto TPU/3-aminopropyltriethoxysilane (APS) co-electrospun fiber mats from silver sol. The use of APS can functionalize TPU fibers with amino groups, facilitating the adsorption of Ag NPs. The effects of pH of silver sol and APS content on Ag NP adsorption and antibacterial activity were investigated. Ag NP adsorption was evidenced by TEM, XPS and TGA. Significant Ag NP adsorption occurred at pH = 3−5. The main driving force for Ag NP adsorption is electrostatic interaction between ―NH3 + of the fibers and ―COO derived from the ―COOH group capped on the surfaces of Ag NPs. The antibacterial activity of the Ag NP-decorated TPU/APS fiber mats was investigated using both gram-negative Escherichia coli and gram-positive Bacillus subtilis. The antibacterial rate increases with increasing APS content up to 5% where the antibacterial rates against both types of bacteria are over 99.9%.

Keywords

PU Electrospinning Coupling agent Immobilization Bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Su, Z.Q., Li, J.F., Ouyang, Z.F., Arras, M.M.L., Wei, G. and Jandt, K.D., RSC Adv., 2014, 4(29): 14833CrossRefGoogle Scholar
  2. 2.
    Zhang, P.P., Zhao, X.N., Ji, Y.C., Ouyang, Z.F., Wen, X., Li, J.F., Su, Z.Q. and Wei, G., J. Mater. Chem. B, 2015, 3(12): 2487CrossRefGoogle Scholar
  3. 3.
    Su, Z.Q., Ding, J.W. and Wei, G., RSC Adv., 2014, 4(94): 52598CrossRefGoogle Scholar
  4. 4.
    Zhang, P.P., Zhao, X.N., Zhang, X., Lai, Y., Wang, X.T., Li, J.F., Wei, G. and Su, Z.Q., ACS Appl. Mater. Interfaces, 2014, 6(10): 7563CrossRefGoogle Scholar
  5. 5.
    Ouyang, Z.F., Li, J.F., Wang, J.H., Li, Q., Ni, T.Y., Zhang, X.Y., Wang, H.X., Li, Q., Su, Z.Q. and Wei, G., J. Mater. Chem. B, 2013, 1(18): 2415CrossRefGoogle Scholar
  6. 6.
    Li, Y., Zhang, P.P., Ouyang, Z.F., Zhang, M.F., Lin, Z.J., Li, J.F., Su, Z.Q. and Wei, G., Adv. Funct. Mater., 2016, 26(13): 2122CrossRefGoogle Scholar
  7. 7.
    Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S. and Ko, F.K., J. Biomed. Mater. Res., 2002, 60(4): 613CrossRefGoogle Scholar
  8. 8.
    Hu, X.L., Liu, S., Zhou, G.Y., Huang, Y.B., Xie, Z.G. and Jing, X.B., J. Control. Release, 2014, 185: 12CrossRefGoogle Scholar
  9. 9.
    Choi, J.S., Kim, H.S. and Yoo, H.S., Drug Deliv. Transl. Re., 2015, 5(2): 137CrossRefGoogle Scholar
  10. 10.
    Agarwal, S., Greiner, A. and Wendorff, J.H., Prog. Polym. Sci., 2013, 38(6): 963CrossRefGoogle Scholar
  11. 11.
    Ahmed, F.E., Lalia, B.S. and Hashaikeh, R., Desalination, 2015, 356: 15CrossRefGoogle Scholar
  12. 12.
    Zhang, B.Y., Guo, Z.X. and Yu, J., Chemical Journal Chinese University (in Chinese), 2016, 37(6): 1216Google Scholar
  13. 13.
    Zhang, B.Y., Xu, L., Guo, Z.X., Yu, J. and Nagai, S., Polym. Compos., 2015, DOI: 10.1002/pc.23697Google Scholar
  14. 14.
    Cheng, H.H., Chen, F., Yu, J. and Guo, Z.X., J. Appl. Polym. Sci., 2016, DOI: 10.1002/APP.44336Google Scholar
  15. 15.
    Nguyen, D.A., Lee, Y.R., Raghu, A.V., Jeong, H.M., Shin, C.M. and Kim, B.K., Polym. Int., 2009, 58(4): 412CrossRefGoogle Scholar
  16. 16.
    Rogulska, M., Kultys, A. and Podkoscielny, W., Eur. Polym. J., 2007, 43(4): 1402CrossRefGoogle Scholar
  17. 17.
    Hacker, C., Karahaliloglu, Z., Seide, G., Denkbas, E.B. and Gries, T., J. Appl. Polym. Sci., 2014, 131(8): 1179CrossRefGoogle Scholar
  18. 18.
    Xing, C.Y., Guan, J.P., Chen, Z.L., Zhu, Y., Zhang, B.W., Li, Y.J. and Li, J.Y., Nanotechnology, 2015, 26(10): 105704CrossRefGoogle Scholar
  19. 19.
    Kang, Y.O., Im, J.N. and Park, W.H., Compos. Part B-Eng., 2015, 75: 256CrossRefGoogle Scholar
  20. 20.
    Zhang, S., Tang, Y.A. and Vlahovic, B., Nanoscale Res. Lett., 2016, 11(1): 80CrossRefGoogle Scholar
  21. 21.
    Martínez Castañón, G.A., Niño Martínez, N., Martínez Gutierrez, F., Martínez Mendoza, J.R. and Ruiz, F., J. Nanopart. Res., 2008, 10(8): 1343CrossRefGoogle Scholar
  22. 22.
    Ciobanu, C.S., Iconaru, S.L., Le Coustumer, P., Constantin, L.V. and Predoi, D., Nanoscale Res. Lett., 2012, 7(1): 1CrossRefGoogle Scholar
  23. 23.
    Rai, M.K., Deshmukh, S.D., Ingle, A.P. and Gade, A.K., J. Appl. Microbiol., 2012, 112(5): 841CrossRefGoogle Scholar
  24. 24.
    Liu, H.H., Li, Q., Liang, X., Xiong, X., Yu, J. and Guo, Z.X., J. Appl. Polym. Sci., 2016, 133(35): 43850Google Scholar
  25. 25.
    de Azeredo, H.M.C., Trends Food Sci. Tech., 2013, 30(1): 56CrossRefGoogle Scholar
  26. 26.
    Rai, M., Yadav, A. and Gade, A., Biotechnol. Adv., 2009, 27(1): 76CrossRefGoogle Scholar
  27. 27.
    Annur, D., Wang, Z.K., Liao, J.D. and Kuo, C., Biomacromolecules, 2015, 16(10): 3248CrossRefGoogle Scholar
  28. 28.
    Peng, Y.J., Qiu, L.H., Pan, C.T., Wang, C.C., Shang, S.M. and Yan, F., Electrochim. Acta, 2012, 75: 399CrossRefGoogle Scholar
  29. 29.
    Mazzaglia, A., Scolaro, L.M., Mezzi, A., Kaciulis, S., de Caro, T., Ingo, G.M. and Padeletti, G., J. Phys. Chem. C, 2009, 113(29): 12772CrossRefGoogle Scholar
  30. 30.
    Rastogi, S.K., Rutledge, V.J., Gibson, C., Newcombe, D.A., Branen, J.R. and Branen, A.L., Nanomed.-Nanotechnol., 2011, 7(3): 305CrossRefGoogle Scholar
  31. 31.
    Zhang, X.C., Xiong, X., Yu, J. and Guo, Z.X., Polymer, 2012, 53(22): 5190CrossRefGoogle Scholar
  32. 32.
    Xiong, X., Li, Q., Zhang, X.C., Yu, J. and Guo, Z.X., Chemical Journal Chinese University (in Chinese), 2014, 35(6): 1323Google Scholar
  33. 33.
    Mahanta, N. and Valiyaveettil, S., Nanoscale, 2011, 3(11): 4625CrossRefGoogle Scholar
  34. 34.
    Melo, L.F., Bott, T.R. and Bernardo, C.A., "Fouling science and technology", Kluwer Academic Publishers, Dordrecht Boston London, 1988, p. 595CrossRefGoogle Scholar
  35. 35.
    Westcott, S.L., Oldenburg, S.J., Lee, T.R. and Halas, N.J., Langmuir, 1998, 14(19): 5396CrossRefGoogle Scholar
  36. 36.
    Dong, H., Wang, D., Sun, G. and Hinestroza, J.P., Chem. Mater., 2008, 20(21): 6627CrossRefGoogle Scholar
  37. 37.
    Sondi, I. and Salopek Sondi, B., J. Colloid Interface Sci., 2004, 275(1): 177CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yu-man Liu
    • 1
  • Qiang Li (李强)
    • 1
  • Huan-huan Liu
    • 1
  • Hui-hui Cheng
    • 1
  • Jian Yu
    • 1
  • Zhao-xia Guo (郭朝霞)
    • 1
  1. 1.Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations