Chinese Journal of Polymer Science

, Volume 35, Issue 6, pp 764–772 | Cite as

Effects of ultra-high temperature treatment on the microstructure of carbon fibers



The microcrystalline structure and microvoid structure in carbon fibers during graphitization process (2300−2700 °C) were characterized employing laser micro-Raman scattering (Raman), X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy (HR-TEM). The crystalline sizes (L a, L c) increased and interlayer spacing (d 002) decreased with increasing heat treatment temperature (HTT). The microvoids in the fibers grew up and contacted to the neighbors with the development of microcrystalline. In addition, the preferred orientation of graphite crystallite along fiber axis decreased and microvoids increased. The results are crucial for analyzing the evolution of microstructure of carbon fibers in the process of heat treatment and important for the preparation of high strength and high modulus carbon fibers.


Carbon fibers Graphitization Microcrystalline structure Microvoid structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahaman, M.S.A., Ismail, A.F. and Mustafa, A., Polym. Degrad. Stab., 2007, 92(8): 1421CrossRefGoogle Scholar
  2. 2.
    Edie, D.D., Carbon, 1998, 36(4): 345CrossRefGoogle Scholar
  3. 3.
    Gao, A.J., Zhao, C., Luo, S., Tong, Y.J. and Xu, L.H., Mater. Lett., 2011, 65(23-24): 3444CrossRefGoogle Scholar
  4. 4.
    Dobb, M.G., Guo, H., Johnson, D.J. and Park, C.R., Carbon, 1995, 33(11): 1553CrossRefGoogle Scholar
  5. 5.
    Montes-Moran, M.A. and Young, R.J., Carbon, 2002, 40(6): 845CrossRefGoogle Scholar
  6. 6.
    Montes-Moran, M.A. and Young, R.J., Carbon, 2002, 40(6): 857CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, S.N., Chaudhuri, R.A., Benner, R.E. and Penugonda, M.S., Compos. Struct., 2006, 76(4): 375CrossRefGoogle Scholar
  8. 8.
    Zickler, G.A., Smarsly, B., Gierlinger, N., Peterlik, H. and Paris, O., Carbon, 2006, 44(15): 3239CrossRefGoogle Scholar
  9. 9.
    Zhou, G.H., Liu, Y.Q., He, L.L., Guo, Q.G. and Ye, H.Q., Carbon, 2011, 49(9): 2883CrossRefGoogle Scholar
  10. 10.
    Thunemann, A.F. and Ruland, W., Macromolecules, 2000, 33(5): 1848CrossRefGoogle Scholar
  11. 11.
    Zhu, C.Z., Liu, X.F., Yu, X.L., Zhao, N., Liu, J.H. and Xu, J., Carbon, 2012, 50(1): 235CrossRefGoogle Scholar
  12. 12.
    Fukuyama, K., Kasahara, Y., Kasahara, N., Oya, A. and Nishikawa, K., Carbon, 2001, 39(2): 287CrossRefGoogle Scholar
  13. 13.
    Kaburagi, M., Bin, Y.Z., Zhu, D., Xu, C.Y. and Matsuo, M., Carbon, 2003, 41(5): 915CrossRefGoogle Scholar
  14. 14.
    Zhu, C.Z., Yu, X.L., Liu, X.F., Mao, Y.Z., Liu, R.G., Zhao, N., Zhang, X.L. and Xu, J., Chinese J. Polym. Sci., 2013, 31(5): 823CrossRefGoogle Scholar
  15. 15.
    Takaku, A. and Shioya, M., J. Mater. Sci., 1986, 21(12): 4443CrossRefGoogle Scholar
  16. 16.
    Chieu, T.C., Dresselhaus, M.S. and Endo, M., Phys. Rev. B, 1982, 26(10): 5867CrossRefGoogle Scholar
  17. 17.
    Tzeng, S.S., Carbon, 2006, 44(10): 1986CrossRefGoogle Scholar
  18. 18.
    Tuinstra, F. and Koenig, J.L., J. Compos. Mater., 1970, 4(4): 492Google Scholar
  19. 19.
    Shim, H.S., Hurt, R.H. and Yang, N.Y.C., Carbon, 2000, 38(1): 29CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Science, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations