Chinese Journal of Polymer Science

, Volume 35, Issue 6, pp 752–763 | Cite as

The mobility of threaded α-cyclodextrins in PR copolymer and its influences on mechanical properties

  • Zhi Yan
  • Lin Ye (叶霖)
  • Ai-ying Zhang
  • Zeng-guo Feng
Papers

Abstract

The methylated polyrotaxane (MePR) copolymer was prepared via the methylation of hydroxyl of threaded α-cyclodextrin (α-CDs) in polyrotaxane (PR) copolymer by CH3I/NaH. Its structure was characterized by GPC, IR and NMR. The WXRD and TGA measurements showed the destruction of channel-like crystalline structure in MePR copolymer. The sliding of threaded α-CDs along PEG axis in PR and MePR copolymers was demonstrated by their dielectric spectra that also evidenced the presence of rotating of threaded α-CDs around PEG axis in MePR copolymer. The frequent and vigorous molecular mobility in MePR and PR copolymers was also verified by dynamic mechanical analysis (DMA) and rheological measurement, which was possibly assigned to the sliding and rotating of threaded α-CDs. DMA and rheological results showed that the mobility of α-CDs could simultaneously strengthen and toughen PR copolymer proved by stress-stain curves. In this paper, we report the CD mobility in PR and MePR copolymers. The macroscopic behaviors of PR copolymer, such as mechanical properties in solid state, were also found to be benefited from CD mobility.

Keywords

PR copolymer Methylation CD mobility Dielectric measurement Mechanical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors sincerely acknowledged Prof. Qiang Wang, Institute of Physics, Chinese Academy of Sciences, for offering dielectric measurement.

Supplementary material

10118_2017_1913_MOESM1_ESM.pdf (1.5 mb)
The Mobility of Threaded α-Cyclodextrins in PR Copolymer and Its Influences on Mechanical Properties

References

  1. 1.
    Harada, A. and Kamachi, M., Macromolecules, 1990, 23(10): 2821CrossRefGoogle Scholar
  2. 2.
    Harada, A., Li, J. and Kamachi, M., Nature, 1992, 356(6367): 325CrossRefGoogle Scholar
  3. 3.
    Inomata, A., Ishibashi, H., Nakajima, T., Sakai, Y., Kidowaki, M., Shimomura, T. and Ito, K., Europhys. Lett., 2007, 79(6): 66004CrossRefGoogle Scholar
  4. 4.
    Inomata, A., Kidowaki, M., Sakai, Y., Yokoyama, H. and Ito, K., Soft Matter, 2011, 7(3): 922CrossRefGoogle Scholar
  5. 5.
    Araki, J. and Ito, K., Soft Matter, 2007, 3(12): 1456CrossRefGoogle Scholar
  6. 6.
    Li, J., Li, X., Zhou, Z.H., Ni, X.P. and Leong, K.W., Macromolecules, 2001, 34(21): 7236CrossRefGoogle Scholar
  7. 7.
    Okumura, Y. and Ito, K., Adv. Mater., 2001, 13(7): 485CrossRefGoogle Scholar
  8. 8.
    Ooya, T., Eguchi, M. and Yui. N., J. Am. Chem. Soc., 2003, 125(43): 13016CrossRefGoogle Scholar
  9. 9.
    Jiang, L., Gao, Z.M., Ye, L., Zhang, A.Y. and Feng, Z.G., Biomater. Sci., 2013, 1(12): 1282CrossRefGoogle Scholar
  10. 10.
    Frampton, M.J. and Anderson, H.L., Angew. Chem. Int. Ed., 2007, 46(7): 1028CrossRefGoogle Scholar
  11. 11.
    Ito, K., Polym. J., 2007, 39(6): 489CrossRefGoogle Scholar
  12. 12.
    Li, X., Kang, H.L., Shen, J.X., Zhang, L.Q., Nishi, T. and Ito, K., Chinese J. Polym. Sci., 2015, 33(3): 433CrossRefGoogle Scholar
  13. 13.
    Zhang, X.W., Zhu, X.Q., Ke, F.Y., Ye, L., Chen, E.Q., Zhang, A.Y. and Feng, Z.G., Polymer, 2009, 50(18): 4343CrossRefGoogle Scholar
  14. 14.
    Tong, X.M., Hou, D.D., Zhang, X.W., Ye, L., Zhang, A.Y. and Feng, Z.G., Chinese J. Polym. Sci., 2008, 26(6): 723CrossRefGoogle Scholar
  15. 15.
    Wang, J., Gao, P., Wang, P.J., Ye, L., Zhang, A.Y. and Feng, Z.G., Polymer, 2011, 52(2): 347CrossRefGoogle Scholar
  16. 16.
    Jiang, L., Ye, L., Zhang, A.Y. and Feng, Z.G., Macromol. Chem. Phys., 2014, 215(10): 1022CrossRefGoogle Scholar
  17. 17.
    Wang, P.J., Ye, L., Zhang, A.Y. and Feng, Z.G., Polym. Int., 2014, 63(6): 1025CrossRefGoogle Scholar
  18. 18.
    Ye, L., Liu, X.Q., Ito, K. and Feng, Z.G., J. Mater. Chem. B, 2014, 2(35): 5746CrossRefGoogle Scholar
  19. 19.
    Kidowaki, M., Nakajima, T., Araki, J., Inomata, A., Ishibashi, H. and Ito, K., Macromolecules, 2007, 40(19): 6859CrossRefGoogle Scholar
  20. 20.
    Yan, Z., Guo, A.J., Ye, L., Zhang, A.Y. and Feng, Z.G., RSC Adv., 2016, 6(39): 33221CrossRefGoogle Scholar
  21. 21.
    Chochos, C.L., Ismailova, E., Brochon, C., Leclerc, N., Tiron, R., Sourd, C., Bandelier, P., Foucher, J., Ridaoui, H., Dirani, A., Soppera, O., Perret, D., Brault, C., Serra, C.A. and Hadziioannou, G., Adv. Mater., 2009, 21(21): 1121CrossRefGoogle Scholar
  22. 22.
    Inoue, Y., Ye, L., Ishihara, K. and Yui, N., Colloid. Surface. B, 2012, 89(1): 223CrossRefGoogle Scholar
  23. 23.
    Kato, K., Mizusawa, T., Yokoyama, H. and Ito, K., J. Phys. Chem. Lett., 2015, 6(20): 4043CrossRefGoogle Scholar
  24. 24.
    Wang, J., Gao, P., Jiang, L., Ye, L., Zhang, A.Y. and Feng, Z.G., Polymer, 2012, 53(14): 2864CrossRefGoogle Scholar
  25. 25.
    Lehn, J.M., P. Natl. Acad. Sci. USA, 2002, 99(8): 4763CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhi Yan
    • 1
  • Lin Ye (叶霖)
    • 1
    • 2
  • Ai-ying Zhang
    • 1
    • 2
  • Zeng-guo Feng
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green ApplicationsBeijingChina

Personalised recommendations