Advertisement

Chinese Journal of Polymer Science

, Volume 35, Issue 1, pp 87–97 | Cite as

A robust and soluble nanopolymer based on molecular grid-based nanomonomer

  • Quan-you Feng
  • Ye-long Han
  • Meng-na Yu
  • Bin Li
  • Ying Wei
  • Ling-hai Xie (解令海)Email author
  • Wei Huang (黄维)Email author
Papers

Abstract

Shape persistent conformations reduce the complexity of polymer materials. Herein, we propose a concept on the nanopolymer that is a nanoscale polymer chain with the repeat units of nanomonomers. In this article, a soluble organic nanopolymer of wide bandgap semiconductors was synthesized by the Yamamoto polymerization of nanogrid monomer as the repeat units with the rectangle size of ∼1.7 nm × 1.2 nm. The alkyl side chain substituent at 9-position of fluorenes guarantees the polygrid with excellent solubility. Tetrafluorenes in the conjugation-interrupted backbones of polygrid acts as the active light-emitting centers without obvious green band in the fluorescence spectra of the films after 10 h annealing at 180 °C, indicating this nanopolymer exhibits excellent spectral stability. Such soluble nanopolymers will be the fifthgeneration of macromolecular materials with a potential character of overall performance improvement.

Keywords

Conformation Polyfluorenes Polygirds Nanopolymers Nanomaterials Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2016_1856_MOESM1_ESM.pdf (705 kb)
A Robust and Soluble Nanopolymer Based on Molecular Grid-based Nanomonomer

References

  1. 1.
    Balzani, V., Bergamini, G. and Ceroni, P., Angew. Chem. Int. Ed., 2015, 54: 11320CrossRefGoogle Scholar
  2. 2.
    Pust, P., Schmidt, P.J. and Schnick, W., Nat. Mater., 2015, 14: 454CrossRefGoogle Scholar
  3. 3.
    Lin, Z.Q., Liang, J., Sun, P.J., Liu, F., Tay, Y.Y., Yi, M.D., Peng, K., Xia, X.H., Xie, L.H., Zhou, X.H., Zhao, J.F. and Huang, W., Adv. Mater., 2013, 25: 3664CrossRefGoogle Scholar
  4. 4.
    Möller, S., Perlov, C., Jackson, W., Taussig, C. and Forrest, S.R., Nature, 2003, 426: 166CrossRefGoogle Scholar
  5. 5.
    Xie, L.H., Yin, C.R., Lai, W.Y., Fan, Q.L. and Huang, W., Prog. Polym. Sci., 2012, 37: 1192CrossRefGoogle Scholar
  6. 6.
    Heremans, P., Gelinck, G.H., Muller, R., Baeg, K.J., Kim, D.Y. and Noh, Y.Y., Chem. Mater., 2010, 23: 341CrossRefGoogle Scholar
  7. 7.
    Kulkarni, A.P., Tonzola, C.J., Babel, A. and Jenekhe, S.A., Chem. Mater., 2004, 16: 4556CrossRefGoogle Scholar
  8. 8.
    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. and Adachi, C., Nature, 2012, 492: 234CrossRefGoogle Scholar
  9. 9.
    Chen, J. and Cao, Y., Acc. Chem. Res., 2009, 42: 1709CrossRefGoogle Scholar
  10. 10.
    Wu, W., Liu, Y. and Zhu, D., Chem. Soc. Rev., 2010, 39: 1489CrossRefGoogle Scholar
  11. 11.
    Chi, C., Im, C., Enkelmann, V., Ziegler, A., Lieser, G. and Wegner, G., Chem. Eur. J., 2005, 11: 6833CrossRefGoogle Scholar
  12. 12.
    List, E.J., Guentner, R., Scanducci de Freitas, P. and Scherf, U., Adv. Mater., 2002, 14: 374CrossRefGoogle Scholar
  13. 13.
    Lin, J., Yu, Z., Zhu, W., Xing, G., Lin, Z., Yang, S., Xie, L., Niu, C. and Huang, W., Polym. Chem., 2013, 4: 477CrossRefGoogle Scholar
  14. 14.
    Lin, J.Y., Zhu, W.S., Liu, F., Xie, L.H., Zhang, L., Xia, R., Xing, G.C. and Huang, W., Macromolecules, 2014, 47: 1001CrossRefGoogle Scholar
  15. 15.
    Liu, Y.Y., Lin, J.Y., Bo, Y.F., Xie, L.H., Yi, M.D., Zhang, X.W., Zhang, H.M., Loh, T.P. and Huang, W., Org. Lett., 2016, 18: 172CrossRefGoogle Scholar
  16. 16.
    Xie, L.H., Ling, Q.D., Hou, X.Y. and Huang, W., J. Am. Chem. Soc., 2008, 130: 2120CrossRefGoogle Scholar
  17. 17.
    Lin, Z.Q., Shi, N.E., Li, Y.B., Qiu, D., Zhang, L., Lin, J.Y., Zhao, J.F., Wang, C., Xie, L.H. and Huang, W., J. Phys. Chem. C, 2011, 115: 4418CrossRefGoogle Scholar
  18. 18.
    Zhao, Z., Chan, C.Y., Chen, S., Deng, C., Lam, J.W., Jim, C.K., Hong, Y., Lu, P., Chang, Z. and Chen, X., J. Mater. Chem., 2012, 22: 4527CrossRefGoogle Scholar
  19. 19.
    Lei, T., Wang, J.Y. and Pei, J., Chem. Mater., 2013, 26: 594CrossRefGoogle Scholar
  20. 20.
    Kang, I., Yun, H.J., Chung, D.S., Kwon, S.K. and Kim, Y.H., J. Am. Chem. Soc., 2013, 135: 14896CrossRefGoogle Scholar
  21. 21.
    Mei, J. and Bao, Z., Chem. Mater., 2013, 26: 604CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Liu, Y., Chen, S., Peng, R. and Ge, Z., Chem. Mater., 2013, 25: 3196CrossRefGoogle Scholar
  23. 23.
    Jiang, Y.R., Zhang, H.X., Zhang, K.X. and Zhang, Q.Y., Chinese J. Polym. Sci., 2015, 33: 490CrossRefGoogle Scholar
  24. 24.
    Harada, A., Takashima, Y. and Nakahata, M., Acc. Chem. Res., 2014, 47: 2128CrossRefGoogle Scholar
  25. 25.
    Brovelli, S., Sforazzini, G., Serri, M., Winroth, G., Suzuki, K., Meinardi, F., Anderson, H.L. and Cacialli, F., Adv. Funct. Mater., 2012, 22: 4284CrossRefGoogle Scholar
  26. 26.
    Wei, P., Yan, X. and Huang, F., Chem. Soc. Rev., 2015, 44: 815CrossRefGoogle Scholar
  27. 27.
    Chang, C.Y., Cheng, Y.J., Hung, S.H., Wu, J.S., Kao, W.S., Lee, C.H. and Hsu, C.S., Adv. Mater., 2012, 24: 549CrossRefGoogle Scholar
  28. 28.
    Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I. and Bauer-Gogonea, S., Nature, 2013, 499: 458CrossRefGoogle Scholar
  29. 29.
    Jiang, Z., Ye, T., Yang, C., Yang, D., Zhu, M., Zhong, C., Qin, J. and Ma, D., Chem. Mater., 2010, 23: 771CrossRefGoogle Scholar
  30. 30.
    Liu, B., Lin, J., Lei, Z., Sun, M., Xie, L., Xue, W., Yin, C., Zhang, X. and Huang, W., Macromol. Chem. Phys., 2015, 216: 1043CrossRefGoogle Scholar
  31. 31.
    Yin, C.R., Han, Y., Li, L., Ye, S.H., Mao, W.W., Yi, M.D., Ling, H.F., Xie, L.H., Zhang, G.W. and Huang, W., Polym. Chem., 2013, 4: 2540CrossRefGoogle Scholar
  32. 32.
    Wei, F., Li, H., Song, C., Ma, Y., Zhou, L., Tung, C.H. and Xu, Z., Org. Lett., 2015, 17: 2860CrossRefGoogle Scholar
  33. 33.
    Zhang, G., Wei, Y., Wang, J., Liu, Y., Xie, L., Wang, L., Ren, B. and Huang, W., Mater. Chem. Front., 2017, DOI: 10.1039/C6QM00004EGoogle Scholar
  34. 34.
    Wang, L., Zhang, G.W., Ou, C.J., Xie, L.H., Lin, J.Y., Liu, Y.Y. and Huang, W., Org. Lett., 2014, 16: 1748CrossRefGoogle Scholar
  35. 35.
    Lin, J., Li, W., Yu, Z., Yi, M., Ling, H., Xie, L., Li, S. and Huang, W., J. Mater. Chem. C, 2014, 2: 3738CrossRefGoogle Scholar
  36. 36.
    Liu, Z.D., Chang, Y.Z., Ou, C.J., Lin, J.Y., Xie, L.H., Yin, C.R., Yi, M.D., Qian, Y., Shi, N.E. and Huang, W., Polym. Chem., 2011, 2: 2179CrossRefGoogle Scholar
  37. 37.
    Chang, Y.Z., Shao, Q., Bai, L.Y., Ou, C.J., Lin, J.Y., Xie, L.H., Liu, Z.D., Chen, X., Zhang, G.W. and Huang, W., Small, 2013, 9: 3218Google Scholar
  38. 38.
    Yin, C.R., Ye, S.H., Zhao, J., Yi, M.D., Xie, L.H., Lin, Z.Q., Chang, Y.Z., Liu, F., Xu, H., Shi, N.E., Qian, Y. and Huang, W., Macromolecules, 2011, 44: 4589CrossRefGoogle Scholar
  39. 39.
    Li, L., Hu, T.Q., Yin, C.R., Xie, L.H., Yang, Y., Wang, C., Lin, J.Y., Yi, M.D., Ye, S.H. and Huang, W., Polym. Chem., 2015, 6: 983CrossRefGoogle Scholar
  40. 40.
    Gong, X., Iyer, P.K., Moses, D., Bazan, G.C., Heeger, A.J. and Xiao, S.S., Adv. Funct. Mater., 2003, 13: 325CrossRefGoogle Scholar
  41. 41.
    Xie, L.H. and Huang, W. “Supramolecular steric hindrance at bulky organic/polymer semiconductors and devices, in non-covalent interactions in the synthesis and design of new compounds”, ed. by Maharramov, A.M., Mahmudov, K.T., Kopylovich, M.N. and Pombeiro, A.J.L., John Wiley & Sons, Inc, Hoboken New Jersey, 2016, p. 443Google Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Quan-you Feng
    • 1
  • Ye-long Han
    • 1
  • Meng-na Yu
    • 1
  • Bin Li
    • 1
  • Ying Wei
    • 1
  • Ling-hai Xie (解令海)
    • 1
    Email author
  • Wei Huang (黄维)
    • 1
    • 2
    Email author
  1. 1.Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjingChina
  2. 2.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingChina

Personalised recommendations