A robust and soluble nanopolymer based on molecular grid-based nanomonomer
- 136 Downloads
- 6 Citations
Abstract
Shape persistent conformations reduce the complexity of polymer materials. Herein, we propose a concept on the nanopolymer that is a nanoscale polymer chain with the repeat units of nanomonomers. In this article, a soluble organic nanopolymer of wide bandgap semiconductors was synthesized by the Yamamoto polymerization of nanogrid monomer as the repeat units with the rectangle size of ∼1.7 nm × 1.2 nm. The alkyl side chain substituent at 9-position of fluorenes guarantees the polygrid with excellent solubility. Tetrafluorenes in the conjugation-interrupted backbones of polygrid acts as the active light-emitting centers without obvious green band in the fluorescence spectra of the films after 10 h annealing at 180 °C, indicating this nanopolymer exhibits excellent spectral stability. Such soluble nanopolymers will be the fifthgeneration of macromolecular materials with a potential character of overall performance improvement.
Keywords
Conformation Polyfluorenes Polygirds Nanopolymers Nanomaterials StabilityPreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- 1.Balzani, V., Bergamini, G. and Ceroni, P., Angew. Chem. Int. Ed., 2015, 54: 11320CrossRefGoogle Scholar
- 2.Pust, P., Schmidt, P.J. and Schnick, W., Nat. Mater., 2015, 14: 454CrossRefGoogle Scholar
- 3.Lin, Z.Q., Liang, J., Sun, P.J., Liu, F., Tay, Y.Y., Yi, M.D., Peng, K., Xia, X.H., Xie, L.H., Zhou, X.H., Zhao, J.F. and Huang, W., Adv. Mater., 2013, 25: 3664CrossRefGoogle Scholar
- 4.Möller, S., Perlov, C., Jackson, W., Taussig, C. and Forrest, S.R., Nature, 2003, 426: 166CrossRefGoogle Scholar
- 5.Xie, L.H., Yin, C.R., Lai, W.Y., Fan, Q.L. and Huang, W., Prog. Polym. Sci., 2012, 37: 1192CrossRefGoogle Scholar
- 6.Heremans, P., Gelinck, G.H., Muller, R., Baeg, K.J., Kim, D.Y. and Noh, Y.Y., Chem. Mater., 2010, 23: 341CrossRefGoogle Scholar
- 7.Kulkarni, A.P., Tonzola, C.J., Babel, A. and Jenekhe, S.A., Chem. Mater., 2004, 16: 4556CrossRefGoogle Scholar
- 8.Uoyama, H., Goushi, K., Shizu, K., Nomura, H. and Adachi, C., Nature, 2012, 492: 234CrossRefGoogle Scholar
- 9.Chen, J. and Cao, Y., Acc. Chem. Res., 2009, 42: 1709CrossRefGoogle Scholar
- 10.Wu, W., Liu, Y. and Zhu, D., Chem. Soc. Rev., 2010, 39: 1489CrossRefGoogle Scholar
- 11.Chi, C., Im, C., Enkelmann, V., Ziegler, A., Lieser, G. and Wegner, G., Chem. Eur. J., 2005, 11: 6833CrossRefGoogle Scholar
- 12.List, E.J., Guentner, R., Scanducci de Freitas, P. and Scherf, U., Adv. Mater., 2002, 14: 374CrossRefGoogle Scholar
- 13.Lin, J., Yu, Z., Zhu, W., Xing, G., Lin, Z., Yang, S., Xie, L., Niu, C. and Huang, W., Polym. Chem., 2013, 4: 477CrossRefGoogle Scholar
- 14.Lin, J.Y., Zhu, W.S., Liu, F., Xie, L.H., Zhang, L., Xia, R., Xing, G.C. and Huang, W., Macromolecules, 2014, 47: 1001CrossRefGoogle Scholar
- 15.Liu, Y.Y., Lin, J.Y., Bo, Y.F., Xie, L.H., Yi, M.D., Zhang, X.W., Zhang, H.M., Loh, T.P. and Huang, W., Org. Lett., 2016, 18: 172CrossRefGoogle Scholar
- 16.Xie, L.H., Ling, Q.D., Hou, X.Y. and Huang, W., J. Am. Chem. Soc., 2008, 130: 2120CrossRefGoogle Scholar
- 17.Lin, Z.Q., Shi, N.E., Li, Y.B., Qiu, D., Zhang, L., Lin, J.Y., Zhao, J.F., Wang, C., Xie, L.H. and Huang, W., J. Phys. Chem. C, 2011, 115: 4418CrossRefGoogle Scholar
- 18.Zhao, Z., Chan, C.Y., Chen, S., Deng, C., Lam, J.W., Jim, C.K., Hong, Y., Lu, P., Chang, Z. and Chen, X., J. Mater. Chem., 2012, 22: 4527CrossRefGoogle Scholar
- 19.Lei, T., Wang, J.Y. and Pei, J., Chem. Mater., 2013, 26: 594CrossRefGoogle Scholar
- 20.Kang, I., Yun, H.J., Chung, D.S., Kwon, S.K. and Kim, Y.H., J. Am. Chem. Soc., 2013, 135: 14896CrossRefGoogle Scholar
- 21.Mei, J. and Bao, Z., Chem. Mater., 2013, 26: 604CrossRefGoogle Scholar
- 22.Wang, Y., Liu, Y., Chen, S., Peng, R. and Ge, Z., Chem. Mater., 2013, 25: 3196CrossRefGoogle Scholar
- 23.Jiang, Y.R., Zhang, H.X., Zhang, K.X. and Zhang, Q.Y., Chinese J. Polym. Sci., 2015, 33: 490CrossRefGoogle Scholar
- 24.Harada, A., Takashima, Y. and Nakahata, M., Acc. Chem. Res., 2014, 47: 2128CrossRefGoogle Scholar
- 25.Brovelli, S., Sforazzini, G., Serri, M., Winroth, G., Suzuki, K., Meinardi, F., Anderson, H.L. and Cacialli, F., Adv. Funct. Mater., 2012, 22: 4284CrossRefGoogle Scholar
- 26.Wei, P., Yan, X. and Huang, F., Chem. Soc. Rev., 2015, 44: 815CrossRefGoogle Scholar
- 27.Chang, C.Y., Cheng, Y.J., Hung, S.H., Wu, J.S., Kao, W.S., Lee, C.H. and Hsu, C.S., Adv. Mater., 2012, 24: 549CrossRefGoogle Scholar
- 28.Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I. and Bauer-Gogonea, S., Nature, 2013, 499: 458CrossRefGoogle Scholar
- 29.Jiang, Z., Ye, T., Yang, C., Yang, D., Zhu, M., Zhong, C., Qin, J. and Ma, D., Chem. Mater., 2010, 23: 771CrossRefGoogle Scholar
- 30.Liu, B., Lin, J., Lei, Z., Sun, M., Xie, L., Xue, W., Yin, C., Zhang, X. and Huang, W., Macromol. Chem. Phys., 2015, 216: 1043CrossRefGoogle Scholar
- 31.Yin, C.R., Han, Y., Li, L., Ye, S.H., Mao, W.W., Yi, M.D., Ling, H.F., Xie, L.H., Zhang, G.W. and Huang, W., Polym. Chem., 2013, 4: 2540CrossRefGoogle Scholar
- 32.Wei, F., Li, H., Song, C., Ma, Y., Zhou, L., Tung, C.H. and Xu, Z., Org. Lett., 2015, 17: 2860CrossRefGoogle Scholar
- 33.Zhang, G., Wei, Y., Wang, J., Liu, Y., Xie, L., Wang, L., Ren, B. and Huang, W., Mater. Chem. Front., 2017, DOI: 10.1039/C6QM00004EGoogle Scholar
- 34.Wang, L., Zhang, G.W., Ou, C.J., Xie, L.H., Lin, J.Y., Liu, Y.Y. and Huang, W., Org. Lett., 2014, 16: 1748CrossRefGoogle Scholar
- 35.Lin, J., Li, W., Yu, Z., Yi, M., Ling, H., Xie, L., Li, S. and Huang, W., J. Mater. Chem. C, 2014, 2: 3738CrossRefGoogle Scholar
- 36.Liu, Z.D., Chang, Y.Z., Ou, C.J., Lin, J.Y., Xie, L.H., Yin, C.R., Yi, M.D., Qian, Y., Shi, N.E. and Huang, W., Polym. Chem., 2011, 2: 2179CrossRefGoogle Scholar
- 37.Chang, Y.Z., Shao, Q., Bai, L.Y., Ou, C.J., Lin, J.Y., Xie, L.H., Liu, Z.D., Chen, X., Zhang, G.W. and Huang, W., Small, 2013, 9: 3218Google Scholar
- 38.Yin, C.R., Ye, S.H., Zhao, J., Yi, M.D., Xie, L.H., Lin, Z.Q., Chang, Y.Z., Liu, F., Xu, H., Shi, N.E., Qian, Y. and Huang, W., Macromolecules, 2011, 44: 4589CrossRefGoogle Scholar
- 39.Li, L., Hu, T.Q., Yin, C.R., Xie, L.H., Yang, Y., Wang, C., Lin, J.Y., Yi, M.D., Ye, S.H. and Huang, W., Polym. Chem., 2015, 6: 983CrossRefGoogle Scholar
- 40.Gong, X., Iyer, P.K., Moses, D., Bazan, G.C., Heeger, A.J. and Xiao, S.S., Adv. Funct. Mater., 2003, 13: 325CrossRefGoogle Scholar
- 41.Xie, L.H. and Huang, W. “Supramolecular steric hindrance at bulky organic/polymer semiconductors and devices, in non-covalent interactions in the synthesis and design of new compounds”, ed. by Maharramov, A.M., Mahmudov, K.T., Kopylovich, M.N. and Pombeiro, A.J.L., John Wiley & Sons, Inc, Hoboken New Jersey, 2016, p. 443Google Scholar