Chinese Journal of Polymer Science

, Volume 33, Issue 5, pp 680–687 | Cite as

Aggregation-induced emission of non-conjugated poly(amido amine)s: Discovering, luminescent mechanism understanding and bioapplication

  • Rui-bin Wang
  • Wang-zhang Yuan
  • Xin-yuan Zhu (朱新远)Email author
Rapid Communications


It is found that the fluorescence of aliphatic poly(amido amine)s including linear and hyperbranched ones can be dramatically enhanced by simple aggregation of polymer chains, attributing to the formation of a variety of intra- and interchain clusters with shared lone-pair electrons and the restriction of intramolecular motions. Thanks to the combination of strong solid fluorescence and excellent biocompatibility, these non-conjugated polymers become promising candidates for bioimaging such as bacterial detection. This finding not only extends the aggregation-induced emission (AIE) systems from conjugated compounds to non-conjugated materials, which expands the bioapplication range of AIE systems, but also sheds light on the exploration of novel unconventional luminogens.


Luminescence Aggregation-induced emission Non-conjugated polymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10118_2015_1635_MOESM1_ESM.pdf (3.3 mb)
Supplementary material, approximately 3.31 MB.


  1. 1.
    Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Chen, H., Qiu, C., Kwok, H.S., Zhan, X., Liu, Y., Zhu, D. and Tang, B.Z., Chem. Commun., 2001, 18: 1740CrossRefGoogle Scholar
  2. 2.
    Hong, Y., Lam, J.W.Y. and Tang, B.Z., Chem. Soc. Rev., 2011, 40: 5361CrossRefGoogle Scholar
  3. 3.
    Lee, W.I., Bae, Y.J. and Bard, A.J., J. Am. Chem. Soc., 2004, 126: 8358CrossRefGoogle Scholar
  4. 4.
    Wang, D.J. and Imae, T., J. Am. Chem. Soc., 2004, 126: 13204CrossRefGoogle Scholar
  5. 5.
    Wu, D.C., Liu, Y., He, C.B. and Goh, S.H., Macromolecules, 2005, 38: 9906CrossRefGoogle Scholar
  6. 6.
    Sun, M., Hong, C.Y. and Pan, C.Y., J. Am. Chem. Soc., 2012, 134: 20581CrossRefGoogle Scholar
  7. 7.
    Wang, R.B., Zhou, L.Z., Zhou, Y.F., Li, G.L., Zhu, X.Y., Gu, H.C., Jiang, X.L., Li, H.Q., Wu, J.L., He, L., Guo, X.Q., Zhu, B.S. and Yan, D.Y., Biomacromolecules, 2010, 11: 489CrossRefGoogle Scholar
  8. 8.
    Porrès, L., Holland, A., Pålsson, L.-O., Monkman, A.P., Kemp, C. and Beeby, A., J. Fluoresc., 2006, 16: 267CrossRefGoogle Scholar
  9. 9.
    Chen, J., Law, C.C.W., Lam, J.W.Y., Dong, Y., Lo, S.M.F., Williams, I.D., Zhu, D. and Tang, B.Z., Chem. Mater., 2003, 15: 1535CrossRefGoogle Scholar
  10. 10.
    Virgili, T., Forni, A., Cariati, E., Pasini, D. and Botta, C., J. Phys. Chem. C, 2013, 117: 27161CrossRefGoogle Scholar
  11. 11.
    Yang, W., Pan, C.Y., Luo, M.D. and Zhang, H.B., Biomacromolecules, 2010, 11: 1840CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rui-bin Wang
    • 1
    • 2
  • Wang-zhang Yuan
    • 1
  • Xin-yuan Zhu (朱新远)
    • 1
    Email author
  1. 1.School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal AgingShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Instrumental Analysis CenterShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations