A method to accelerate the gelation of disulfide-crosslinked hydrogels

Abstract

A glutathione-disulfide-ended poly(ethylene glycol) (GSSG-PEG-GSSG) was designed. It is a much more efficient accelerator than glutathione disulfide (GSSG) for the gelation of an 8arm-PEG-SH polymer solution, and the gelation time can be tuned from hours to minutes at the physiological pH and temperature. A mechanism was proposed to explain the different behaviors of the GSSG and GSSG-PEG-GSSG gelation systems. Due to the ever-going thiol-disulfide exchange reaction, the thiol-disulfide hydrogels also showed interesting swelling behavior.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Peppas, N.A., Huang, Y.B., Torres-Lugo, M., Ward, J.H. and Zhang, J., Annu. Rev. Biomed. Eng., 2000, 2: 9

    CAS  Article  Google Scholar 

  2. 2

    Hatefi, A. and Amsden, B., J. Control. Release, 2002, 80(1-3): 9

    CAS  Article  Google Scholar 

  3. 3

    Zhang, J.Z., Xiao, C.S., Wang, J.C., Zhuang, X.L. and Chen, X.S., Chinese J. Polym. Sci., 2013, 31(12): 1697

    CAS  Article  Google Scholar 

  4. 4

    Tibbitt, M.W. and Anseth, K.S., Biotechnol. Bioeng., 2009, 103(4): 655

    CAS  Article  Google Scholar 

  5. 5

    Nicodemus, G.D. and Bryant, S.J., Tissue Eng. Part B Rev., 2008, 14(2): 149

    CAS  Article  Google Scholar 

  6. 6

    Chen, Y.M., Yang, J.J., Osada, Y. and Gong, J.P., Chinese J. Polym. Sci., 2011, 29(1): 23

    Article  Google Scholar 

  7. 7

    Patenaude, M., Smeets, N.M.B. and Hoare, T., Macromol. Rapid Commun., 2014, 35(6): 598

    CAS  Article  Google Scholar 

  8. 8

    Van Tomme, S.R., Storm, G. and Hennink, W.E., Int. J. Pharmaceut., 2008, 355(1–2): 1

    Article  Google Scholar 

  9. 9

    Chen, P.C., Kohane, D.S., Park, Y.J., Bartlett, R.H., Langer, R. and Yang, V.C., J. Biomed. Mater. Res. A, 2004, 70A(3): 459

    CAS  Article  Google Scholar 

  10. 10

    Hou, D.D., Hao, T., Ye, L., Zhang, A.Y., Wang, C.Y. and Feng, Z.G., Acta Polymerica Sinica (in Chinese), 2008, (4): 388

  11. 11

    Tao, Y., Tong, X.M., Zhang, Y., Lai, J.J., Huang, Y.B., Jiang, Y.R. and Guo, B.H., Acta Biomater., 2013, 9(2): 5022

    CAS  Article  Google Scholar 

  12. 12

    Deng, G.H., Li, F.Y., Yu, H.X., Liu, F.Y., Liu, C.Y., Sun, W.X., Jiang, H.F. and Chen, Y.M., ACS Macro Lett., 2012, 1(2): 275

    CAS  Article  Google Scholar 

  13. 13

    Deng, G.H., Tang, C.M., Li, F.Y., Jiang, H.F. and Chen, Y.M., Macromolecules, 2010, 43(3): 1191

    CAS  Article  Google Scholar 

  14. 14

    Hisano, N., Morikawa, N., Iwata, H. and Ikada, Y., J. Biomed. Mater. Res. A, 1998, 40(1): 115

    CAS  Article  Google Scholar 

  15. 15

    Aliyar, H.A., Hamilton, P.D. and Ravi, N., Biomacromolecules, 2005, 6(1): 204

    CAS  Article  Google Scholar 

  16. 16

    Zarembinski, T.I., Doty, N.J., Erickson, I.E., Srinivas, R., Wirostko, B.M. and Tew, W.P., Acta Biomater., 2014, 10(1): 94

    CAS  Article  Google Scholar 

  17. 17

    Mueller, C., Capelle, M.A., Arvinte, T., Seyrek, E. and Borchard, G., Eur. J. Pharm. Biopharm., 2011, 79(3): 646

    CAS  Article  Google Scholar 

  18. 18

    Deghenghi, R., Orsolini, P., Sartore, L. and Veronese, F., 1994, U.S.Pat., 5,286,637

  19. 19

    Jin, R., Moreira Teixeira, L.S., Dijkstra, P.J., van Blitterswijk, C.A., Karperien, M. and Feijen, J., Biomaterials, 2010, 31(11): 3103

    CAS  Article  Google Scholar 

  20. 20

    Tong, X.M., Lai, J.J., Guo, B.H. and Huang, Y.B., J. Polym. Sci., Part A: Polym. Chem., 2011, 49(6): 1513

    CAS  Article  Google Scholar 

  21. 21

    Hisano, N., Iwata, H., Teramura, Y., Chen, H. and Ikada, Y., J. Polym. Sci., Part A: Polym. Chem., 2011, 49(3): 671

    CAS  Article  Google Scholar 

  22. 22

    Yang, F., Wang, J., Cao, L.Y., Chen, R., Tang, L.J. and Liu, C.S., J. Mater. Chem. B, 2014, (2): 295

  23. 23

    Li, J.W., Nowak, P. and Otto, S., J. Am. Chem. Soc., 2013, 135(25): 9222

    CAS  Article  Google Scholar 

  24. 24

    Nagy, P., Antioxidant Redox Sign., 2013, 18(13): 623

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xinming Tong 童新明 or Yanbin Huang 黄延宾.

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 21004038).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Yang, X., Tong, X. et al. A method to accelerate the gelation of disulfide-crosslinked hydrogels. Chin J Polym Sci 33, 118–127 (2015). https://doi.org/10.1007/s10118-015-1567-5

Download citation

Keywords

  • Thiol-disulfide exchange
  • In situ gelation
  • Glutathione
  • PEG