Skip to main content
Log in

Loaded rubber-like materials subjected to small-amplitude vibrations

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This paper proposes a constitutive law and a method for characterizing highly preloaded viscoelastic materials subjected to linear (small-amplitude) vibrations. A multiplicative non-separable variables law has been suggested to model the behavior that depends on both stretch and time/frequency. This approach allows splitting the intricate combined test performed simultaneously on both stretch and frequency, generally in a limited experimental domain up to 100 Hz, into two independent tests. Thus, on one hand, the dynamic complex modulus dependent on frequency alone is evaluated on the basis of vibration tests in a large experimental domain up to 100 kHz. On the other hand, energetic parameters are determined from a quasi-static hyperelastic tensile test. The complex modulus, dependent on both stretch and frequency, is then deduced from the results acquired from uncoupled investigations. This work shows that, in extension, the elastic modulus increases with increasing stretch, and the loss factor decreases with increasing stretch; while, in compression, around the material undeformed state, the modulus increases as the stretch increases till a certain value of compression stretch (upturn point depending on material characteristics), and then the modulus decreases as the stretch increases. Globally, preload rigidifies materials but reduces their damping property. These results closely match a well-known observation in solid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lai, J.S. and Findley, N.W., Trans. Soc. Rheol., 1968, 12(2): 259

    Article  Google Scholar 

  2. Lockett, F.J., “Nonlinear Viscoelastic Solids”, Acad. Press, London/New York, 1972

    Google Scholar 

  3. Molinari, A., C. R. Acad. Sc., 1973, 277, A: 621

    Google Scholar 

  4. Huet, C., J. Rheol., 1985, 29(3): 245

    Article  Google Scholar 

  5. Coleman, B.D. and Noll, W., Rev. Mod. Phys., 1961, 33: 239

    Article  Google Scholar 

  6. Valanis, K.C. and Landel, R.F., Trans. Soc. Rheol., 1967, 11(2): 213

    Article  Google Scholar 

  7. Green, A.E. and Adkins, J.E., “Large elastic deformation and nonlinear continuum mechanics”, Clarendon Press, Oxford, 1970

    Google Scholar 

  8. Schapery, R.A., Polym. Eng. Sci., 1969, 9(4): 295

    Article  CAS  Google Scholar 

  9. Cardoon, A.H. and Brugeman, M., Proc. of ICMM 10, 1995, 5: 91

    Google Scholar 

  10. O’Dowd, N.P. and Knauss, W.G., J. Mech. Phys. Solids, 1995, 43(5): 771

    Article  Google Scholar 

  11. Lianis, A., Proc. Fourth Int. Cong. Rheol., pt 2, Interscience, New York, 1965, p. 104

    Google Scholar 

  12. Valanis, K.C., Trans. Soc. Rheol., 1965, 9: 171

    Article  Google Scholar 

  13. Nashif, A.D., Jones, D.I.G. and Henderson, J.P., “Vibrations damping”, John Wiley & Sons, New York, 1975

    Google Scholar 

  14. Morman Jr, K.N. and Nagtegaal, J.C., Int. J. Num. Meth. Eng., 1983, 19: 1079

    Article  Google Scholar 

  15. Padovan, J., Int. J. Comp Struct., 1987, 27(2): 249

    Article  Google Scholar 

  16. Kim, B.K. and Youn, S.K., Arch. App. Mech., 2001, 71: 748

    Article  Google Scholar 

  17. Lion, A., Retka, J. and Rendek, M., Mech. Res. Comm., 2009, 36: 653

    Article  Google Scholar 

  18. Govindjee, S. and Reese, S., J. Eng. Mater. Technol., 1997, 119: 251

    Article  CAS  Google Scholar 

  19. Suwannachit, A., Nackenhorst, U. and Zamm, Z., Ang. Math. Mech., 2010, 90(5): 418

    Article  Google Scholar 

  20. Miehe, C. and Keck, J., J. Mech. Phys. Sol., 2000, 48: 323

    Article  Google Scholar 

  21. Yang, L.M., Shim, V.P.W. and Lim, C.T., Int. J. Imp. Eng., 2000, 24: 545

    Article  Google Scholar 

  22. Kim, B.K., Youn, S.K. and Lee, W.S., Arch. App. Mech., 2004, 73: 781

    Article  Google Scholar 

  23. Chevalier, Y. and Vinh, T.J., “Mechanics of Viscoelastic Materials and Wave Dispersion”, Iste-Wiley, London-UK, Hoboken-USA, 2010

    Google Scholar 

  24. Soula, M., Vinh, T., Chevalier, Y., Beda, T. and Esteoul, C., J. Sound Vib., 1997, 205(2): 167

    Article  Google Scholar 

  25. Chevalier Y., Beda T. and Merdrignac J., Méc. Mat. Elect., 1989, 431: 55

    Google Scholar 

  26. Beda, T. and Chevalier, Y., Méc. Indust. Mat., 1997, 50(5): 228

    Google Scholar 

  27. Beda, T., J. Polym. Sci. Part B: Polym. Phys., 2007, 45(13): 1713

    Article  CAS  Google Scholar 

  28. Ogden, R.W., “Non-linear elastic deformations”, Ellis Harwood, England, 1984

    Google Scholar 

  29. Pucci, E. and Saccomandi, G., Rub. Chem. Technol., 2002, 75: 839

    Article  CAS  Google Scholar 

  30. Beda, T., J. Polym. Sci. Part B: Polym. Phys., 2005, 43(2): 125

    Article  CAS  Google Scholar 

  31. Carbone, R., Antonelli, V., Langelle, A. and Marrisen, R., Proc. COMSOL Conf., Milan, 2009

    Google Scholar 

  32. Beda, T., Gacem, H., Chevalier, Y. and Mbarga, P., Exp. Polym. Let., 2008, 2(9): 615

    Article  CAS  Google Scholar 

  33. Treloar, L.R.G., Trans. Farad. Soc., 1944, 40: 59

    Article  CAS  Google Scholar 

  34. Yeoh, O.H. and Fleming, P.D., J. Polym. Sci. Part B: Polym. Phys, 1997, 35(12): 1919

    Article  CAS  Google Scholar 

  35. Simo, J.C., Comput. Meth. Appl. Mech. & Eng. 1987, 60: 153

    Article  Google Scholar 

  36. Cho, J.H. and Youn, S.K., Arch. App. Mech., 2006, 75: 275

    Article  Google Scholar 

  37. Ferry, J.D., “Vioscoelastic properties of polymers”, 3rd ed. Wiley, New York, 1980

    Google Scholar 

  38. Jones, D.I.G., “Handbook of viscoelastic vibration damping”, Wiley, NY, 2001

    Google Scholar 

  39. Beda, T. and Chevalier, Y., Mech. Time-Depend. Mat., 2004, 8(2): 105

    Article  Google Scholar 

  40. Beda, T. and Chevalier, Y., Am. Inst. Aeron. Astron. J., 2004, 42(7): 1450

    Article  Google Scholar 

  41. Chevalier, Y. and Beda, T., J. Euro. Syst. Aut., 2008, 42(6–7–8): 863

    Google Scholar 

  42. Voet, A. and Morawski, J.C., Rub. Chem. Technol., 1974, 47(4): 765

    Article  CAS  Google Scholar 

  43. Beda, T. and Chevalier, Y., Comp. Mech., 2003, 32(3): 177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Beda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beda, T., Casimir, J.B., Atcholi, K.E. et al. Loaded rubber-like materials subjected to small-amplitude vibrations. Chin J Polym Sci 32, 620–632 (2014). https://doi.org/10.1007/s10118-014-1437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-014-1437-6

Keywords

Navigation