Skip to main content
Log in

Effect of conductive fillers on the cyclic stress-strain and nano-scale free volume properties of silicone rubber

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The effect of carbon black (CB) and graphite (G) powders on the macroscopic and nano-scale free volume properties of silicone rubber based on poly(di-methylsiloxane) (PDMS) was studied through thermal and cyclic mechanical measurements, as well as with positron annihilation lifetime spectroscopy (PALS). The melting temperature of the composites (T m) and the endothermic enthalpy of melting (ΔH m) were estimated by differential scanning calorimetry (DSC). T m and the degree of crystallinity (χ c) of PDMS composites were found to decrease with increasing the CB content. This can be explained due to the increase in physical cross-linking which results in a decrease in the crystallite thickness. Besides, χ c was found to be dependent on the filler type. Cyclic stress-strain behavior of PDMS loaded with different contents of filler has been studied. Mullins ratio (R M) was found to be dependent on the filler type and content. It was found that, R M increases with increasing the filler content due to the increase in physical cross-linking which results in a decrease in the size of free volume, as observed through a decrease of the o-Ps lifetime τ 3 measured by PALS. Moreover, the hysteresis in PDMS-CB composites was more pronounced than in PDMS-G composites. Furthermore, a correlation was established between the free volume V f and the mechanical properties of PDMS composites containing different fillers. A negative correlation was observed between V f and R M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frogley, M.D., Ravich, D. and Wagner, H.D., Compos. Sci. Technol., 2003, 63(11): 1647

    Article  CAS  Google Scholar 

  2. Fuan, H., Jintu, F. and Sienting, L., Polym. Test., 2008, 27: 964

    Article  CAS  Google Scholar 

  3. Thongruang, W., Ritthichaiwong, C., Bunnaul, P., Smithmaitrie, P., Chetpattananondh, K. and Songklanakarin, J. Sci. Technol., 2008, 30(3): 361

    Google Scholar 

  4. Bokobza, L., J. Appl. Polym. Sci., 2004, 93(5): 2095

    Article  CAS  Google Scholar 

  5. Xiao, M., Sun, L., Liu, J., Li, Y. and Gong, K., Polymer, 2002, 42: 2245

    Article  Google Scholar 

  6. Radovic, L., Walker, P. and Jenkins, R., Fuel, 1983, 62: 849

    Article  CAS  Google Scholar 

  7. Laine, N., Vastola, F. and Walker, P., J. Phys. Chem., 1963, 67: 2030

    Article  CAS  Google Scholar 

  8. Coltharp, M. and Hackerman, N., J. Phys. Chem., 1968, 72: 1171

    Article  CAS  Google Scholar 

  9. Brown, J.G., Dollimore, J., Freedman, C.M. and Harrison, B.H., Thermochim. Acta, 1970, 1: 499

    Article  CAS  Google Scholar 

  10. Lang, F.M. and Magnier, P., “Chemistry and Physics of Carbon”, Vol. 3, P.L. Walker, Jr., Ed., Marcel Dekker, New York, 1968, p. 121

  11. Chung, G.C., Jun, S.H., Lee, K.Y. and Kim, M.H., J. Electrochem. Soc., 1999, 146: 1664

    Article  CAS  Google Scholar 

  12. Sahouli, B., Blacher, S., Brouers, F., Darmstadt, H., Roy, C. and Kaliaguine, S., Fuel, 1996, 75(10): 1244

    CAS  Google Scholar 

  13. Ling, C., Liang, L., Dajun, W. and Guohua, C., Polym. Compos., 2007, 28: 493

    Article  CAS  Google Scholar 

  14. Meunier, L., Chagnon, G., Favier, D., Orgeas, L. and Vacher, P., Polym. Test., 2008, 27: 765

    Article  CAS  Google Scholar 

  15. Park, E.S., J. Appl. Polym. Sci., 2007, 105: 460

    Article  CAS  Google Scholar 

  16. Jia, L.Y., Du, Z.J., Zhang, C., Li, C.J. and Li, H.Q., Polym. Eng. Sci., 2008, 48: 74

    Article  CAS  Google Scholar 

  17. Kohl, J.G., Singer, I.L. and Simonson, D.L., Polym. Test., 2008, 27: 679

    Article  CAS  Google Scholar 

  18. Mohsen, M., Abd-El Salam, M.H., Ashry, A., Ismail, A. and Ismail, H., Polym. Degrad. Stab., 2005, 87: 381

    Article  CAS  Google Scholar 

  19. Asad Ali, S., Kumar, R., Nambissan, P.M.G., Singh, F. and Prasad, R., Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, 268(11–12): 1809

    Article  CAS  Google Scholar 

  20. Kumar, R., Udayan, D., Nambissan, P.M.G., Maitra, M., Asad, A.S., Middya, T.R., Tarafdar, S., Singh, F., Avasthi, D.K. and Prasad, R., Nucl. Instrum. Methods Phys. Res., Sect. B, 2008, 266(8): 1783

    Article  CAS  Google Scholar 

  21. Liao, Y., Peng, M., Liu, F. and Xie, X., Chinese J. Polym. Sci., 2013, 31(6): 870

    Article  CAS  Google Scholar 

  22. Jobando, V.O. and Quarles, C.A., Phys. Stat. Sol. (c), 2007, 4(10): 3763

    Article  CAS  Google Scholar 

  23. Jobando, V.O. and Quarles, C.A., Phys. Stat. Sol. (c), 2007, 4(10): 3767

    Article  CAS  Google Scholar 

  24. Gomaa, E., J. Appl. Polym. Sci., 2007, 105: 2564

    Article  CAS  Google Scholar 

  25. Mostafa, N., J. Appl. Polym. Sci., 2008, 108: 3001

    Article  CAS  Google Scholar 

  26. Kirkegaard, P., Eldrup, M., Mogensen, O.E. and Pederson, N.J., Comput. Phys. Commun., 1981, 23: 307

    Article  CAS  Google Scholar 

  27. Kansy, J., Nucl. Instrum. Methods Phys. Res., Sect. A, 1996, 374: 235

    Article  CAS  Google Scholar 

  28. Tao, S.J., Chem. Phys., 1972, 56: 5499

    Article  CAS  Google Scholar 

  29. Eldrup, M., Lightbody, D. and Sherwood, N.J., Chem. Phys, 1981, 63: 51

    Article  CAS  Google Scholar 

  30. Rowe, B.W., Pas, S.J., Hill, A.J., Suzuki, R., Freeman, B.D. and Paul, D.R., Polymer, 2009, 50: 6149

    Article  CAS  Google Scholar 

  31. Patnaik, A., Zhu, Z., Yang, G. and Sun, Y., Phys. Status Solidi A., 1998, 169: 115

    Article  CAS  Google Scholar 

  32. Chambon, F. and Winter, H.H., J. Rheol., 1987, 31(8): 683

    Article  CAS  Google Scholar 

  33. Stevenson, I., David, L., Gauthier, C., Arambourg, L., Davenas, J. and Vigier, G., Polymer, 2001, 42: 9287

    Article  CAS  Google Scholar 

  34. Leung, W.P. and Choy, C.L., J. Polym. Sci: Polym. Phys. Ed., 1983, 21: 725

    CAS  Google Scholar 

  35. Mullins, L. and Tobin, N.R., Rubber. Chem. Technol., 1957, 30: 555

    Article  Google Scholar 

  36. Diani, J., Fayolle, B. and Gilormini, P., Eur. Polym. J., 2009, 45: 601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. El-Gamal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd-El Salam, M.H., El-Gamal, S., Mohsen, M. et al. Effect of conductive fillers on the cyclic stress-strain and nano-scale free volume properties of silicone rubber. Chin J Polym Sci 32, 558–567 (2014). https://doi.org/10.1007/s10118-014-1428-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-014-1428-7

Keywords

Navigation