Skip to main content

Effect of molecular structure on the gas permeability of cellulose aliphatate esters


In this work, four kinds of cellulose aliphatate esters, cellulose acetate (CA), cellulose propionate (CP), cellulose butyrate (CB) and cellulose acetate butyrate (CAB) are synthesized by the homogeneous acylation reactions in cellulose/AmimCl solutions. These cellulose aliphatate esters are used to prepare gas separation membranes and the effects of molecular structure, such as substituent type, degree of substitution (DS) and distribution of substituents, on the gas permeability are studied. For CAs, as the DS increases, their gas permeabilities for all five gases (O2, N2, CH4, CO and CO2) increase, and the ideal permselectivity significantly increases first and then slightly decreases. At similar DS value, the homogenously synthesized CA (distribution order of acetate substituent: C6 > C3 > C2) is superior to the heterogeneously synthesized CA (distribution order of acetate substituent: C3 > C2 > C6) in gas separation. With the increase of chain length of aliphatate substituents from acetate to propionate, and to butyrate, the gas permeability of cellulose aliphatate esters gradually increases. The cellulose mixed ester CAB with short acetate groups and relatively long butyrate groups exhibits higher gas permeability or better permselectivity than individual CA or CB via the alteration of the DS of two substituents.

This is a preview of subscription content, access via your institution.


  1. 1

    Basu, S., Khan, A.L., Angels, C.O., Liu, C.Q. and Vankelecom, I.F.J., Chem. Soc. Rev., 2010, 39: 750

    Article  CAS  Google Scholar 

  2. 2

    Guiver, M.D. and Lee, Y.M., Science, 2013, 339: 284

    Article  CAS  Google Scholar 

  3. 3

    Yampolskii, Y., Macromolecules, 2012, 45: 3298

    Article  CAS  Google Scholar 

  4. 4

    Park, J.Y. and Paul, D.R., J. Memb. Sci., 1997, 125: 23

    Article  CAS  Google Scholar 

  5. 5

    Li, J.T., Wang, S.C., Nagai, K., Nakagawa, T. and Albert, W.H., J. Memb. Sci., 1998, 138: 143

    Article  CAS  Google Scholar 

  6. 6

    Klemm, D.H., Heublein, B., Fink, H.P. and Bohn, A., Angew. Chem. Int. Ed., 2005, 44: 3358

    Article  CAS  Google Scholar 

  7. 7

    Nakai, Y., Yoshimizu, H. and Tsujita, Y., J. Memb. Sci., 2005, 256: 72

    CAS  Google Scholar 

  8. 8

    Fareha, Z.K., Toshikazu, S., Masashi, S., Yoshiyuki, N. and Toshio, M., Macromolecules, 2006, 39: 9208

    Article  Google Scholar 

  9. 9

    Bernardo, P., Drioli, E. and Golemme, G., Ind. Eng. Chem. Res., 2009, 48: 4638

    Article  CAS  Google Scholar 

  10. 10

    Wang, Y. and Easteal, J.A., J. Memb. Sci., 1999, 157: 53

    Article  CAS  Google Scholar 

  11. 11

    Fareha, Z.K., Masashi, K., Yoshiyuki, N., and Toshio, M., J. Memb. Sci., 2008, 312: 207

    Article  Google Scholar 

  12. 12

    Ryuhei, M., Fareha, Z.K., Toshikazu, S., Masashi, S., Yoshiyuki, N. and Toshio, M., J. Memb. Sci., 2007, 305: 136

    Article  Google Scholar 

  13. 13

    Liebert, T.F. and Heinze, T., Biomacromolecules, 2005, 6: 333

    Article  CAS  Google Scholar 

  14. 14

    Heinze, T., Pohl, M., Schaller, J. and Meister, F., Macromol. Biosci., 2007, 7: 1225

    Article  CAS  Google Scholar 

  15. 15

    Fox, S.C., Li, B., Xu, D.Q. and Edgar, J.K., Biomacromolecules, 2011, 12: 1956

    Article  CAS  Google Scholar 

  16. 16

    Welton, T., Chem. Rev., 1999, 99: 2071

    Article  CAS  Google Scholar 

  17. 17

    Pinkert, A., Marsh, K.N., Pang, S.S. and Staiger, M.P., Chem. Rev., 2009, 109: 6712

    Article  CAS  Google Scholar 

  18. 18

    Cao, Y., Wu, J., Zhang, J., Li, H.Q., He, J.S. and Zhang, Y., Chem. Eng. J., 2009, 147: 13

    Article  CAS  Google Scholar 

  19. 19

    Thomas, H., Katrin, S. and Susann, B., Macromol. Biosci., 2005, 5: 520

    Article  Google Scholar 

  20. 20

    Meng, T., Gao, X., Zhang, J., Yuan, J.Y., Zhang, Y.Z. and He, J.S., Polymer, 2009, 50: 447

    Article  CAS  Google Scholar 

  21. 21

    Xu, D.Q., Li, B., Tate, C. and Edgar, J.K., Cellulose, 2011, 18: 405

    Article  CAS  Google Scholar 

  22. 22

    Erdmenger, T., Haensch, C., Hoogenboom, R. and Schubert, S.U., Macromol. Biosci., 2007, 7: 440

    Article  CAS  Google Scholar 

  23. 23

    Zhang, J.M., Wu, J., Zhang, J. and He, J.S., Cellulose, 2009, 16: 299

    Article  CAS  Google Scholar 

  24. 24

    Gericke, M., Fardim, P. and Heinze, T., Molecules, 2012, 17: 7458

    Article  Google Scholar 

  25. 25

    Köhler, S. and Heinze, T., Cellulose, 2007, 14: 489

    Article  Google Scholar 

  26. 26

    Liu, C.F., Sun, R.C., Zhang, A.P. and Ren, J.L., Carbohydr. Polym., 2007, 68: 17

    Article  CAS  Google Scholar 

  27. 27

    Zhang, H., Wu, J., Zhang, J. and He, J.S., Macromolecules, 2005, 38: 8272

    Article  CAS  Google Scholar 

  28. 28

    Goodlett, V.W., Dougherty, J.T. and Patton, H.W., J. Polym. Sci. Part A-1: Polym. Chem., 1971, 9: 155

    Article  CAS  Google Scholar 

  29. 29

    Gantzel, P.K. and Merten, U., Ind. Eng. Chem. Process Des. Dev., 1970, 9: 331

    Article  CAS  Google Scholar 

  30. 30

    Wu, J., Zhang, J., Zhang, H. and He, J.S., Biomacromolecules, 2004, 5: 266

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jun Zhang.

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21174151 and 51103167), Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Nos. KJCX2-YW-H-19 and KJCX2-YW-H30-03), and the Major State Basic Research Development Program of China (973 Program) (No. 2010CB934705).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, J., Zhang, Jm., Feng, Y. et al. Effect of molecular structure on the gas permeability of cellulose aliphatate esters. Chin J Polym Sci 32, 1–8 (2014).

Download citation


  • Cellulose aliphatate ester
  • Structure
  • Gas permeability