Chinese Journal of Polymer Science

, Volume 31, Issue 4, pp 591–600 | Cite as

Adsorption of TiCl4 and electron donor on defective MgCl2 surfaces and propylene polymerization over Ziegler-Natta catalyst: A DFT study

  • Rui-hua Cheng
  • Jun Luo
  • Zhen Liu
  • Jing-wen Sun
  • Wei-huan Huang
  • Ming-ge Zhang
  • Jian-jun Yi
  • Bo-ping Liu (刘柏平)Email author


The formations of defective MgCl2 surfaces, and subsequent adsorption of Ti species and electron donor, as well as propylene polymerization over the Ziegler-Natta catalyst have been investigated using density functional theory (DFT) method. Twelve possible support models of regular and defective MgCl2 (110) and (100) surfaces were built. The individual adsorptions of titanium chlorides as mononuclear or dinuclear, and ethyl benzoate (EB) as electron donor, on these models were evaluated. The analysis of energies presented the cases of EB adsorption were generally more stable than titanium chlorides on both surfaces. Thus, EB as internal electron donor mainly prevented TiCl4 from coordinating on the MgCl2 surfaces where mostly non-stereospecific active sites could be formed. Exceptionally, A5 the site model with terminal Cl-vacancy on the MgCl2 support, presented stronger adsorption of TiCl4 than that of EB on (110) surface. Since the TiCl4 and ethyl benzoate (EB) would compete to adsorb on the support surface, it seems reasonable to assume that TiCl4 might predominately occupy this site, which can act as the most plausible active site for propylene polymerization. The first insertion of propylene monomer into the A5 active site model showed that it exhibited good regioselectivity but poor stereospecificity in the absence of electron donor.


Supported Ziegler-Natta catalyst Propylene polymerization Defective MgCl2 surfaces Electron donor Density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore, E.P. Jr., “Polypropylene handbook: polymerization, characterization, properties, applications”, Hanser Publishers, Munich, Germany, 1996Google Scholar
  2. 2.
    Seth, M., Margl, P.M. and Ziegler, T., Macromolecules, 2002, 35: 7815CrossRefGoogle Scholar
  3. 3.
    Boero, M., Parrinello, M., Weiss, H. and Hüffer, S., J. Phys. Chem. A, 2001, 105: 5096CrossRefGoogle Scholar
  4. 4.
    D’Amore, M., Credendino, R., Budzelaar, P.H.M., Causa, M. and Busico, V., J. Catal., 2012, 286, 103Google Scholar
  5. 5.
    Boero, M., Parrinello, M., Huffer, S. and Weiss, H., J. Am. Chem. Soc., 2000, 122: 501CrossRefGoogle Scholar
  6. 6.
    Stukalov, D.V., Zilberberg, I.L. and Zakharov, V.A., Macromolecules, 2009, 42: 8165CrossRefGoogle Scholar
  7. 7.
    Correa, A., Piemontesi, F., Morini, G. and Cavallo, L., Macromolecules, 2007, 40: 9181CrossRefGoogle Scholar
  8. 8.
    Lee, J.W. and Jo, W.H., J. Organomet. Chem., 2009, 694: 3076CrossRefGoogle Scholar
  9. 9.
    Taniike, T. and Terano, M., J. Catal., 2012, 293: 39CrossRefGoogle Scholar
  10. 10.
    Monaco, G., Toto, M., Guerra, G., Corradini, P. and Cavallo, L., Macromolecules, 2000, 33: 8953CrossRefGoogle Scholar
  11. 11.
    Tangjituabun, K., Kim, S., Hiraoka, Y., Taniike, T., Terano, M., Jongsomjit, B. and Praserthdam, P., Chinese J. Polymer Sci., 2008, 26(5): 547CrossRefGoogle Scholar
  12. 12.
    Rodriguez, L.A.M. and van Looy, H.M., J. Polym. Sci. A-1 Polym. Chem., 1966, 4: 1971CrossRefGoogle Scholar
  13. 13.
    Barbé, P.C. and Marchetti, E., Makromol. Chem., Rapid Commun., 1983, 4: 249CrossRefGoogle Scholar
  14. 14.
    Mori, H., Sawada, M., Higuchi, T., Hasebe, K., Otsuka, N. and Terano, M., Macromol. Rapid Commun., 1999, 20: 245CrossRefGoogle Scholar
  15. 15.
    Jiang, X., Wang, H., Tian, X., Yang, Y. and Fan, Z., Ind. Eng. Chem. Res., 2011, 50: 259CrossRefGoogle Scholar
  16. 16.
    Jiang, X., Chen, Y.P., Fan, Z.Q., Wang, Q., Fu, Z.S. and Xu, J.T., J. Mol. Catal. A: Chem., 2005, 235: 209CrossRefGoogle Scholar
  17. 17.
    Kim, S.H. and Somorjai, G.A., J. Phys. Chem. B, 2002, 106: 1386CrossRefGoogle Scholar
  18. 18.
    Kim, S.H. and Somorjai, G.A., J. Phys. Chem. B, 2000, 104: 5519CrossRefGoogle Scholar
  19. 19.
    Magni, E. and Somorjai, G.A., Appl. Surf. Sci., 1995, 89: 187CrossRefGoogle Scholar
  20. 20.
    Koranyi, T.I., Magni, E. and Somorjai, G.A., Top. Catal., 1999, 7: 179CrossRefGoogle Scholar
  21. 21.
    Andoni, A., Chadwick, J.C. and Thüne, P.C., J. Catal., 2008, 257: 81CrossRefGoogle Scholar
  22. 22.
    Liu, B., Cheng, R., Liu, Z., Qiu, P., Zhang, S., Taniike, T., Terano, M., Tashino, K. and Fujita, T., Macromol. Symp., 2007, 260, 42CrossRefGoogle Scholar
  23. 23.
    Bazhenov, A., Linnolahti, M., Karttunen, A.J., Pakkanen, T.A., Denifl, P. and Leinonen, T., J. Phys. Chem. C, 2012, 116: 7957CrossRefGoogle Scholar
  24. 24.
    Correa, A., Credendino, R., Pater, J.T.M., Morini, G. and Cavallo, L., Macromolecules, 2012, 45: 3695CrossRefGoogle Scholar
  25. 25.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T. Jr., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A., Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004Google Scholar
  26. 26.
    Lee, C., Yang, W. and Parr, R.G., Parr, Phys. Rev. B, 1988, 37: 785CrossRefGoogle Scholar
  27. 27.
    Becke, A.D., Phys. Rev. A, 1988, 38: 3098CrossRefGoogle Scholar
  28. 28.
    Becke, A.D., J. Chem. Phys., 1993, 98: 5648CrossRefGoogle Scholar
  29. 29.
    Gonzalez, C. and Schlegel, H.B., J. Phys. Chem., 1990, 94: 5523CrossRefGoogle Scholar
  30. 30.
    Su, D., Yu, D., Hu, L. and Jiao, S., Chinese J. Polym. Sci., 1988, 6(1): 56Google Scholar
  31. 31.
    Cui, N., Zhang, Z., Li, H., Chen, S., Zhang, X., Ke, Y. and Hu, Y., Acta Polymerica Sinica (in Chinese), 2005, (6): 902Google Scholar
  32. 32.
    Busico, V., Corradini, P., De Martino, L., Proto, A., Savino, V. and Albizzati, E., Makromol. Chem., 1985, 186: 1279CrossRefGoogle Scholar
  33. 33.
    Cossee, P., J. Catal., 1964, 3: 80CrossRefGoogle Scholar
  34. 34.
    Arlman, E.J. and Cossee, P., J. Catal., 1964, 3: 99CrossRefGoogle Scholar
  35. 35.
    Corradini, P., Guerra, G. and Cavallo, L., Acc. Chem. Res., 2004, 37: 231CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rui-hua Cheng
    • 1
  • Jun Luo
    • 1
  • Zhen Liu
    • 1
  • Jing-wen Sun
    • 1
  • Wei-huan Huang
    • 2
  • Ming-ge Zhang
    • 2
  • Jian-jun Yi
    • 2
  • Bo-ping Liu (刘柏平)
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Petrochemical Research InstituteChina National Petroleum CorporationBeijingChina

Personalised recommendations