Chinese Journal of Polymer Science

, Volume 31, Issue 2, pp 325–332 | Cite as

Mechanical and thermal properties of nanosized titanium dioxide filled rigid poly(vinyl chloride)

  • Yun-xiang Zhang
  • Yi-hu Song (宋义虎)
  • Qiang Zheng
Paper

Abstract

Nano-sized rod-like titanium dioxide (TiO2) filled rigid poly(vinyl chloride) (PVC) nanocomposites were prepared by using injection-molding method. Vicat, Charpy impact and tensile tests as well as thermogravimetric and dynamic mechanical analyses were used to characterize the structure and properties of the nanocomposites. The results showed that nano-TiO2 could improve Vicat softening temperature and also improve thermal stability of PVC during the stages of dehydrochlorination and formation of carbonaceous conjugated polyene sequences, which can be ascribed to restriction of the nanoparticles on the segmental relaxation as being evidenced by raises in glass transition and β-relaxation temperatures of PVC upon filling TiO2. Addition of TiO2 nanoparticles less than 40 phr (parts per hundreds of resin) could significantly improve impact strength of the composites while the TiO2 agglomeration at high contents leads to a reduction in impact toughness.

Keywords

Poly(vinyl chloride) (PVC) Titanium dioxide (TiO2Thermal property Mechanical property Impact strength 

References

  1. 1.
    Zhao, H., Sun, R.M., Luo, Y.J. and Li, J., Polym. Compos., 2008, 29: 1014CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Chen, Z.H. and Li, C.Z., J. Mater. Sci., 2005, 40: 2097CrossRefGoogle Scholar
  3. 3.
    Zeng, X.F., Wang, W.Y., Wang, G.Q. and Chen, J.F., J. Mater. Sci., 2008, 43: 3505CrossRefGoogle Scholar
  4. 4.
    Yoo, Y., Kim, S.S., Won, J.C., Choi, K.Y. and Lee, J.H., Polym. Bull., 2004, 52: 373CrossRefGoogle Scholar
  5. 5.
    Yang, D.Y., Liu, Q.X., Xie, X.L. and Zeng, F.D., J. Therm. Anal. Calorim., 2006, 84: 355CrossRefGoogle Scholar
  6. 6.
    Xie, X.L., Liu, Q.X., Li, R.K.Y., Zhou, X.P., Zhang, Q.X., Yu, Z.Z. and Mai, Y.W., Polymer, 2004, 45: 6665CrossRefGoogle Scholar
  7. 7.
    Xie, X.L., Li, B.G., Pan, Z.R., Li, R.K.Y. and Tjong, S.C., J. Appl. Polym. Sci., 2001, 80: 2105CrossRefGoogle Scholar
  8. 8.
    Sun, S.S., Li, C.Z., Zhang, L., Du, H.L. and Burnell-Gray, J.S., Polym. Int., 2006, 55: 158CrossRefGoogle Scholar
  9. 9.
    Shimpi, N.G. and Mishra, S., J. Appl. Polym. Sci., 2011, 119: 148CrossRefGoogle Scholar
  10. 10.
    Ramesh, S. and Arof, A.K., J. Mater. Sci., 2009, 44: 6404CrossRefGoogle Scholar
  11. 11.
    Patil, C.B., Kapadi, U.R., Hundiwale, D.G. and Mahulikar, P.P., J. Mater. Sci., 2009, 44: 3118CrossRefGoogle Scholar
  12. 12.
    Peprnicek, T., Kalendova, A., Pavlova, E., Simonik, J., Duchet, J. and Gerard, J.F., Polym. Degrad. Stab., 2006, 91: 3322CrossRefGoogle Scholar
  13. 13.
    Madaleno, L., Schjodt-Thomsen, J. and Pinto, J.C., Compos. Sci. Technol., 2010, 70: 804CrossRefGoogle Scholar
  14. 14.
    Liu, J., Chen, G.M., Yang, J.P. and Ding, L.P., J. Appl. Polym. Sci., 2010, 116: 2058CrossRefGoogle Scholar
  15. 15.
    Gong, F.L., Zhao, C.G., Feng, M., Qin, H.L. and Yang, M.S., J. Mater. Sci., 2004, 39: 293CrossRefGoogle Scholar
  16. 16.
    Gong, F.L., Feng, M., Zhao, C.G., Zhang, S.M. and Yang, M.S., Polym. Test., 2004, 23: 847CrossRefGoogle Scholar
  17. 17.
    Gong, F.L., Feng, M., Zhao, C.G., Zhang, S.M. and Yang, M.S., Polym. Degrad. Stab., 2004, 84: 289CrossRefGoogle Scholar
  18. 18.
    Chen, N., Wan, C.Y., Zhang, Y. and Zhang, Y.X., Polym. Test., 2004, 23: 169CrossRefGoogle Scholar
  19. 19.
    Chen, G.S., Tian, M.H. and Guo, S.Y., J. Polym. Sci. Polym. Phys., 2006, 45: 709Google Scholar
  20. 20.
    Chen, C.H., Teng, C.C., Su, S.F., Wu, W.C. and Yang, C.H., J. Polym. Sci. Polym. Phys., 2006, 44: 451CrossRefGoogle Scholar
  21. 21.
    Chetanachan, W., Sutthitavil, W. and Chomcheuy, W., J. Vinyl. Addit. Technol., 2011, 17: 92CrossRefGoogle Scholar
  22. 22.
    Allen, N.S. and Katami, H., Polym. Degrad. Stab., 1996, 52: 311CrossRefGoogle Scholar
  23. 23.
    Anton-Prinet, C., Mur, G., Gay, M., Audouin, L. and Verdu, J., Polym. Degrad. Stab., 1998, 61: 211CrossRefGoogle Scholar
  24. 24.
    Gardette, J.L. and Lemaire, J., Polym. Degrad. Stab., 1991, 34: 135CrossRefGoogle Scholar
  25. 25.
    Cho, S.M. and Choi, W.Y., J. Photochem. Photobiol. A-Chem., 2001, 143: 221CrossRefGoogle Scholar
  26. 26.
    Edge, M., Liauw, C.M., Allen, N.S. and Herrero, R., Polym. Degrad. Stab., 2010, 95: 2022CrossRefGoogle Scholar
  27. 27.
    Gesenhues, U., Polym. Degrad. Stab., 2000, 68: 185CrossRefGoogle Scholar
  28. 28.
    Kim, S.H., Kwak, S.Y. and Suzuki, T., Polymer, 2006, 47: 3005CrossRefGoogle Scholar
  29. 29.
    Hussain, M., Nakahira, A., Nishijima, S. and Niihara, K., Mater. Lett., 1996, 26: 299CrossRefGoogle Scholar
  30. 30.
    Ng, C.B., Schadler, L.S. and Siegel, R.W., Nanostruct. Mater., 1999, 12: 507CrossRefGoogle Scholar
  31. 31.
    Yang, J.L., Zhang, Z. and Zhang, H., Compos. Sci. Technol., 2005, 65: 2374CrossRefGoogle Scholar
  32. 32.
    Xie, X.L., Li, R.K.Y., Liu, Q.X. and Mai, Y.W., Polymer, 2004, 45: 2793CrossRefGoogle Scholar
  33. 33.
    Zuiderduin, W.C.J., Westzaan, C., Huetink, J. and Gaymans, R.J., Polymer, 2003, 44: 261CrossRefGoogle Scholar
  34. 34.
    Du, P., Yu, J., Lin, P., Song, Y. and Zheng, Q., Acta Polymerica Sinica (in Chinese), 2011, (12): 1395Google Scholar
  35. 35.
    Du, P., Yu, J., Lin, P., Song, Y. and Zheng, Q., Chinese J. Polym. Sci., 2011, 29(6): 757CrossRefGoogle Scholar
  36. 36.
    Nicolais, L. and Narkis, M., Polym. Eng. Sci., 1971, 11: 194CrossRefGoogle Scholar
  37. 37.
    Gao, J.G., Du, Y.G. and Dong, C.F., Polym. Compos., 2010, 31: 1822CrossRefGoogle Scholar
  38. 38.
    Meier, R.J. and Struik, L.C.E., Polymer, 1998, 39: 31CrossRefGoogle Scholar
  39. 39.
    Teyssedre, G., Reinecke, H., Corrales, T., Navarro, R. and Tiemblo, P., Macromolecules, 2005, 38: 10820CrossRefGoogle Scholar
  40. 40.
    Sterzynskia, T., Tomaszewska, J., Piszczek, K. and Skorczewska, K., Compos. Sci. Technol., 2010, 70: 966CrossRefGoogle Scholar
  41. 41.
    Pan, M.W., Shi, X.D., Li, M.C., Hu, H.Y. and Zhang, L.C., J. Appl. Polym. Sci., 2004, 94: 277CrossRefGoogle Scholar
  42. 42.
    Sanchez-Jimenez, P.E., Perejon, A., Criado, J.M., Dianez, M.J. and Perez-Maqueda, L.A., Polymer, 2010, 51: 3998CrossRefGoogle Scholar
  43. 43.
    Bacaloglu, R. and Fisch, M., Polym. Degrad. Stab., 1995, 47: 33CrossRefGoogle Scholar
  44. 44.
    Lattimer, R.P. and Kroenke, W.J., J. Appl. Polym. Sci., 1982, 27: 1355CrossRefGoogle Scholar
  45. 45.
    Blazso, M. and Jakab, E., J. Anal. Appl. Pyrol., 1999, 49: 125CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yun-xiang Zhang
    • 1
  • Yi-hu Song (宋义虎)
    • 1
  • Qiang Zheng
    • 1
  1. 1.Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations