Chinese Journal of Polymer Science

, Volume 31, Issue 2, pp 242–250 | Cite as

Synthesis, characterization and spectroscopic investigation of pyrazinoporphyrazine network polymer-supported metal (II)-based catalysts

  • H. H. Abdel-Razik
  • B. H. Asghar
  • E. Kenawy


Chloranil through condensation reaction with vicinal diamine such as diaminomaleonitrile produced heterocyclic monomer, p-benzoquinonebis[2,3-b; 2′,3′-b′]pyrazine-5,6-dinitrile. The tetranitrile monomer was cyclo-tetramerised using lithium/pentanol and acetic acid affording the corresponding tetra p-benzoquinone bis[2,3-b; 2′,3′-b′]pyrazinoporphyrazine)]-based network polymer (2H-Pz). The tetranitril monomer was cyclo-tetramerised using metal salt and quinoline affording the corresponding porphyrazinato-metal II-based network polymers (M-Pz), M = Co, Ni or Cu. Elemental analytical results, IR and NMR spectral data of the prepared molecules are consistent with their assigned formulations. Molecular masses and metal contents of the synthesized polymers proved to be of high molecular masses which confirm the efficiency of tetramerization polymerization and complexation reactions. The prepared pyrazinoporphyrazines were used as efficient catalysts for the oxidation of thiophenol and benzylthiol to their disulfides in the presence of air atmosphere. The results of oxidation of thiophenol and benzylthiol show that after 15 min the maximum yield of the corresponding disulfides reached 95%, 91%, respectively.


Pyrazinoporphyrazine Polymer-supported metal (II)-based catalysts Chloranil. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jörg, K., Subramanian, L.R. and Michael, H., J. Porphyrins Phthalocyanines, 2000, 4: 498CrossRefGoogle Scholar
  2. 2.
    Sakamoto, K., Ohno-Okumura, E., Kato, T., Watanabe, M. and Cook, M., J. Metal-Based Drugs, 2008, 2008: 1CrossRefGoogle Scholar
  3. 3.
    Faust, R. and Weber, C., J. Org. Chem., 1999, 64: 2571CrossRefGoogle Scholar
  4. 4.
    Wang, C.S., Bryce, M.R., Batsanov, A.S. and Howard, J.A.K., Chem. Eur. J., 1973, 10: 1679Google Scholar
  5. 5.
    Budd, P.M., Ghanem, B., Msayib, K., McKeown, N.B. and Tattershall, C., J. Mater. Chem., 2003, 13: 2721CrossRefGoogle Scholar
  6. 6.
    Mani, N.S., Beall, L.S., White, A.J.P., Williams, D.J., Barrett, A.G.M. and Hoffman, B.M., Chem. Commun., 1994, 1943Google Scholar
  7. 7.
    Shindy, H.A., El-Maghraby, M.A. and Eissa, F.M., Dyes Pigm., 2006, 68: 11CrossRefGoogle Scholar
  8. 8.
    Schutten, J.H. and Beelen, T.P.M., J. Molec. Catal., 1981, 10: 85CrossRefGoogle Scholar
  9. 9.
    Brouwer, W.M., Fiet, P. and German, A.L., J. Molec. Catal., 1984, 22: 297CrossRefGoogle Scholar
  10. 10.
    Brouwer, W.M., Traa, P.A.M., de Weerd, T.J.W., Piet, F. and German, A.L., Die Angew. Makromol., Chem., 1984, 128: 133CrossRefGoogle Scholar
  11. 11.
    Arai, H. and Yashiro, M., J. Molec. Catal., 1978, 3: 427CrossRefGoogle Scholar
  12. 12.
    Abdel-Razik, H.H., El-Sayed, S. and Hassen, A., J. Appl. Polym. Sci., 2011, 121: 3579CrossRefGoogle Scholar
  13. 13.
    Abdel-Razik, H.H. and Mahmoud, K.H., J. Appl. Polym. Sci., 2012, 123: 1329CrossRefGoogle Scholar
  14. 14.
    Kim, J., Jaung, J.Y. and Ahn, H., Macromol. Res., 2008, 16(4): 367CrossRefGoogle Scholar
  15. 15.
    Jaung, J.Y., Matsuoka, M. and Fukunishi, K., Synthesis, 1998, 1998: 1347CrossRefGoogle Scholar
  16. 16.
    Puigdollers, J., Voz, C., Fonrodona, M., Cheylan, S., Stella, M., Andreu, J., Vetter, M. and Alcubilla, R., J. Non-Cryst. Solids, 2006, 352: 1778CrossRefGoogle Scholar
  17. 17.
    Wizel, S., Margel, S., Gedanken, A., Rojas, T.C., Fernandez, A. and Prozorov, R., J. Mater. Res., 1999, 14(10): 3913CrossRefGoogle Scholar
  18. 18.
    Bruder, I., Schöneboom, J., Dinnebier, R., Ojala, A., Schäfer, S., Sens, R., Erk, P. and Weis, J., Org. Electron., 2010, 11: 377CrossRefGoogle Scholar
  19. 19.
    Cory, M.G. and Zerner, M.C., Chem. Rev., 2001, 91: 813CrossRefGoogle Scholar
  20. 20.
    Chen, Q., Gu, D. and Gan, F., Physica B, 1995, 212: 189CrossRefGoogle Scholar
  21. 21.
    McKeown, N.B., Makhseed, S. and Budd, P.M., Chem. Commun., 2002, 2780Google Scholar
  22. 22.
    Iranpoor, N. and Zeynizadeh, B., Synthesis, 1999, 49Google Scholar
  23. 23.
    Sonavane, S.U., Chidambaram, M., Almog, J. and Sasson, Y., Tetrahedron Lett., 2007, 48: 6048CrossRefGoogle Scholar
  24. 24.
    Joglekar, H., Samant, S. and Joshi, J., Water Res., 1991, 25: 135CrossRefGoogle Scholar
  25. 25.
    Sadana, A. and Katzer, J., J. Catal., 1974, 35: 140CrossRefGoogle Scholar
  26. 26.
    Rollman, L.D., J. Amer. Chem. Soc., 1975, 97: 2132CrossRefGoogle Scholar
  27. 27.
    Alejandre, A., Medina, F., Salagre, P., Fabregat, A. and Sueiras, J.E., Appl. Catal. B: Environ., 1998, 18: 307CrossRefGoogle Scholar
  28. 28.
    Hay, A.S., Adv. Polym. Sci., 1967, 4: 496CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceMansoura UniversityNew DamiettaEgypt
  2. 2.Chemistry Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  3. 3.Chemistry Department, Faculty of Applied SciencesUmm Al-Qura UniversityMakkahSaudi Arabia
  4. 4.Chemistry Department, Polymer Research Group, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations