Advertisement

Synthesis of functional polyethylene via copolymerization of ethylene and substituted allene using bis(β-enaminoketonato)titanium catalysts

  • Miao Hong
  • Bai-xiang Li
  • Yue-sheng Li (李悦生)
Article

Abstract

Novel copolymerization of ethylene with substituted allenes (CH2=C=CH-R, 1: R=n-butyl, 2: R = n-octyl) using bis(β-enaminoketonato)titanium catalysts [PhN=C(R2)CHC(R1)O]2TiCl2 (1a: R1 = CF3, R2 = CH3; 1b: R1 = Ph, R2 = CF3) has been investigated. In the presence of modified methylaluminoxane, these catalysts can copolymerize ethylene with substituted allenes, affording copolymers with unimodal molecular weight distributions and homogeneous compositions. By varying the reaction conditions, the comonomer incorporation can be tuned in the range of 0–3.6 mol%. 1H-NMR spectra reveal that the copolymerization proceeds through 1,2-insertion fashion of allene comonomer exclusively, and the regioselective nature maintains under various reaction conditions. The retained intra-chain double bond can be converted into the epoxy group under mild conditions.

Keywords

Ziegler-Natta polymerization Functional polyethylene Allene 

References

  1. 1.
    Dong, J.Y. and Hu, Y.L., Coord. Chem. Rev., 2006, 250: 47CrossRefGoogle Scholar
  2. 2.
    Chung, T.C., Prog. Polym. Sci., 2002, 27: 39CrossRefGoogle Scholar
  3. 3.
    Younkin, T.R., Connor, E.F., Henderson, J.I., Frendrich, S.K., Grubbs, R.H. and Bansleben, D.A., Science, 2000, 287: 460CrossRefGoogle Scholar
  4. 4.
    Dong, J.Y. and Chung, T.C., Macromolecules, 2002, 35: 2868CrossRefGoogle Scholar
  5. 5.
    Nomura, K., Liu, J.Y., Fujiki, M. and Takemoto, A., J. Am. Chem. Soc., 2007, 129: 14170CrossRefGoogle Scholar
  6. 6.
    Pan, L., Hong, M., Ye, W.P. and Li, Y.S., Macromolecules, 2009, 42: 4391CrossRefGoogle Scholar
  7. 7.
    Endo, T. and Tomita, I., Prog. Polym. Sci., 1997, 22: 565CrossRefGoogle Scholar
  8. 8.
    Ma, S.M., Chem. Rev., 2005, 105: 2829CrossRefGoogle Scholar
  9. 9.
    Legand, J., Boucher, J. and Anderson, K., J. Polym. Sci., Polym. Chem. Ed., 1977, 15: 2785CrossRefGoogle Scholar
  10. 10.
    Takahashi, T., Yokozawa, T. and Endo, T., J. Polym. Sci., Polym. Chem. Ed., 1992, 30: 583CrossRefGoogle Scholar
  11. 11.
    Takagi, K., Tomita, I. and Endo, T., Macromolecules, 1997, 30: 7386CrossRefGoogle Scholar
  12. 12.
    Endo, T., Takagi, K. and Tomita, I., Tetrahedron, 1997, 53: 15187CrossRefGoogle Scholar
  13. 13.
    Tomita, I., Kondo, Y., Takagi, K. and Endo, T., Macromolecules, 1994, 27: 4413CrossRefGoogle Scholar
  14. 14.
    Mochizuki, K. and Tomita, I., Macromolecules, 2006, 39: 6336CrossRefGoogle Scholar
  15. 15.
    Zhu, W.W., Ni, X.F. and Shen, Z.Q., Chem. J. Chinese Universities, 2008, 29: 2554Google Scholar
  16. 16.
    Zhang, X.H., Shen, Z., Li, L.T., Lu, G.L., Gu, L.N. and Huang, X.Y., Polymer, 2007, 48,5507Google Scholar
  17. 17.
    Ni, X.F., Zhu, W.W. and Shen, Z.Q., Polymer, 2010, 51: 2548CrossRefGoogle Scholar
  18. 18.
    Li, X.F., Dai, K., Ye, W.P., Pan, L. and Li, Y.S., Organometallics, 2004, 23: 1223CrossRefGoogle Scholar
  19. 19.
    Tang, L.M., Duan, Y.Q., Pan, L. and Li, Y.S., J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 1681CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Miao Hong
    • 1
    • 2
  • Bai-xiang Li
    • 1
  • Yue-sheng Li (李悦生)
    • 1
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Changchun BranchGraduate School of the Chinese Academy of SciencesChangchunChina

Personalised recommendations