Skip to main content

Advertisement

Log in

A Pattern Decomposition Algorithm for Data Mining of Frequent Patterns

  • Original Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract.

Efficient algorithms to mine frequent patterns are crucial to many tasks in data mining. Since the Apriori algorithm was proposed in 1994, there have been several methods proposed to improve its performance. However, most still adopt its candidate set generation-and-test approach. In addition, many methods do not generate all frequent patterns, making them inadequate to derive association rules. We propose a pattern decomposition (PD) algorithm that can significantly reduce the size of the dataset on each pass, making it more efficient to mine all frequent patterns in a large dataset. The proposed algorithm avoids the costly process of candidate set generation and saves time by reducing the size of the dataset. Our empirical evaluation shows that the algorithm outperforms Apriori by one order of magnitude and is faster than FP-tree algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 14 May 2001 / Revised 5 September 2001 / Accepted in revised form 26 October 2001

Correspondence and offprint requests to: Qinghua Zou, Department of Computer Science, California University–Los Angeles, CA 90095, USA. Email: zou@cs.ucla.eduau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Q., Chu, W., Johnson, D. et al. A Pattern Decomposition Algorithm for Data Mining of Frequent Patterns . Knowl Inform Sys 4, 466–482 (2002). https://doi.org/10.1007/s101150200016

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s101150200016

Navigation