Skip to main content
Log in

Location selection by multi-criteria decision-making methods based on objective and subjective weightings

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

The location selection is a strategic decision that significantly influences revenue, level of competition, and success of companies and countries. This study aims to propose a hybrid approach for the location selection, to evaluate the potential location for the automotive manufacturing plant of Turkey, and to reveal a comprehensive analysis of weighting and multiple criteria decision-making (MCDM) methods. The proposed approach integrates different objective and subjective weighting, MCDM, and Copeland methods. Turkey has recently introduced its first automobile prototypes and has announced that the manufacturing plant will be located in Bursa. This decision is thoroughly examined via four objective weighting methods—entropy, criteria importance through inter-criteria correlation, standard deviation, and mean weight and a subjective method—analytic hierarchy process. Besides, the alternatives are evaluated based on six MCDM methods—technique for order preference by similarity to ideal solution, preference ranking organization method for enrichment evaluations, vise kriterijumska optimizacija i kompromisno resenje, organization, rangement et synthese de donnes relationnelles, elimination and choice translating reality, and the weighted sum method. The outcomes of the weighting methods and MCDM methods, the impact of the attribute weights provided by each method on rankings, the outcome of each method pair, and selection of the best location (Bursa) are thoroughly evaluated considering a real-world case with a potential outcome that makes evaluations more realistic and tangible unlike most of the other studies in the literature. In this regard, Spearman's rank correlation coefficients are considered. Also, sensitivity analysis is conducted to reveal the robustness of the methods and the impact of each weight on outcomes. Some considerable results, including the most robust method and optimal method pairs for the case, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang J, Lee H (1997) An AHP decision model for facility location selection. Facilities 15(9/10):241–254. https://doi.org/10.1108/02632779710178785

    Article  Google Scholar 

  2. Guitouni A, Martel J-M (1998) Tentative guidelines to help choosing an appropriate MCDA method. Eur J Oper Res 109(2):501–521

    Article  Google Scholar 

  3. Abdel-Basset M, Gamal A, Chakrabortty RK, Ryan M (2021) A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: a case study. J Clean Prod 280:124462. https://doi.org/10.1016/j.jclepro.2020.124462

    Article  Google Scholar 

  4. Kannan D, Moazzeni S, Sm D, Afrasiabi A (2021) A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran. J Clean Prod 279:122368. https://doi.org/10.1016/j.jclepro.2020.122368

    Article  Google Scholar 

  5. Wang R, Li X, Xu C, Li F (2020) Study on location decision framework of electric vehicle battery swapping station: using a hybrid MCDM method. Sustain Urban Areas 61:102149. https://doi.org/10.1016/j.scs.2020.102149

    Article  Google Scholar 

  6. Hwang C-L, Yoon K (1981) Methods for multiple attribute decision making. In: Multiple attribute decision making. Springer, pp 58–191

  7. Brans JP, Vincke P (1985) Note—A preference ranking organisation method. Manage Sci 31(6):647–656. https://doi.org/10.1287/mnsc.31.6.647

    Article  MATH  Google Scholar 

  8. Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects: the promethee method. Eur J Oper Res 24(2):228–238. https://doi.org/10.1016/0377-2217(86)90044-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Coello Coello CA (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):269–308. https://doi.org/10.1007/bf03325101

    Article  Google Scholar 

  10. Bourguignon B, Massart DL (1994) The Oreste method for multicriteria decision making in experimental chemistry. Chemom Intell Lab Syst 22(2):241–256. https://doi.org/10.1016/0169-7439(93)E0083-G

    Article  Google Scholar 

  11. Roy B (1978) ELECTRE III: un algorithme de classements fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du CERO 20(1):3–24

    MATH  Google Scholar 

  12. Opricovic S, Tzeng G-H (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455. https://doi.org/10.1016/S0377-2217(03)00020-1

    Article  MATH  Google Scholar 

  13. Tavakkoli Moghaddam R, Mousavi SM, Heydar M (2011) An integrated AHP-VIKOR methodology for plant location selection. Int J Eng 24(2):127–137

    Google Scholar 

  14. Rezaian S, Jozi SA (2016) Application of multi criteria decision-making technique in site selection of wind farm—a case study of Northwestern Iran. J Indian Soc Remote Sens 44(5):803–809. https://doi.org/10.1007/s12524-015-0517-6

    Article  Google Scholar 

  15. Vasileiou M, Loukogeorgaki E, Vagiona DG (2017) GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renew Sustain Energy Rev 73:745–757. https://doi.org/10.1016/j.rser.2017.01.161

    Article  Google Scholar 

  16. Chauhan A, Singh A (2016) A hybrid multi-criteria decision making method approach for selecting a sustainable location of healthcare waste disposal facility. J Clean Prod 139:1001–1010. https://doi.org/10.1016/j.jclepro.2016.08.098

    Article  Google Scholar 

  17. Kuo M-S (2011) Optimal location selection for an international distribution center by using a new hybrid method. Expert Syst Appl 38(6):7208–7221. https://doi.org/10.1016/j.eswa.2010.12.002

    Article  Google Scholar 

  18. Sánchez-Lozano JM, García-Cascales MS, Lamata MT (2016) Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. J Clean Prod 127:387–398. https://doi.org/10.1016/j.jclepro.2016.04.005

    Article  Google Scholar 

  19. Dey B, Bairagi B, Sarkar B, Sanyal SK (2017) Group heterogeneity in multi member decision making model with an application to warehouse location selection in a supply chain. Comput Ind Eng 105:101–122. https://doi.org/10.1016/j.cie.2016.12.025

    Article  Google Scholar 

  20. Ishizaka A, Nemery P, Lidouh K (2013) Location selection for the construction of a casino in the Greater London region: a triple multi-criteria approach. Tour Manage 34:211–220. https://doi.org/10.1016/j.tourman.2012.05.003

    Article  Google Scholar 

  21. Kharat MG, Kamble SJ, Raut RD, Kamble SS, Dhume SM (2016) Modeling landfill site selection using an integrated fuzzy MCDM approach. Model Earth Syst Environ 2(2):53. https://doi.org/10.1007/s40808-016-0106-x

    Article  Google Scholar 

  22. Wu Y, Zhang T, Xu C, Zhang B, Li L, Ke Y, Yan Y, Xu R (2019) Optimal location selection for offshore wind-PV-seawater pumped storage power plant using a hybrid MCDM approach: a two-stage framework. Energy Convers Manage 199:112066. https://doi.org/10.1016/j.enconman.2019.112066

    Article  Google Scholar 

  23. Villacreses G, Gaona G, Martínez-Gómez J, Jijón DJ (2017) Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: the case of continental Ecuador. Renew Energy 109:275–286. https://doi.org/10.1016/j.renene.2017.03.041

    Article  Google Scholar 

  24. Wu Y, Zhang B, Xu C, Li L (2018) Site selection decision framework using fuzzy ANP-VIKOR for large commercial rooftop PV system based on sustainability perspective. Sustain Urban Areas 40:454–470. https://doi.org/10.1016/j.scs.2018.04.024

    Article  Google Scholar 

  25. Liu K-M, Lin S-H, Hsieh J-C, Tzeng G-H (2018) Improving the food waste composting facilities site selection for sustainable development using a hybrid modified MADM model. Waste Manage 75:44–59. https://doi.org/10.1016/j.wasman.2018.02.017

    Article  Google Scholar 

  26. Lee H-C, Chang C-T (2018) Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew Sustain Energy Rev 92:883–896. https://doi.org/10.1016/j.rser.2018.05.007

    Article  Google Scholar 

  27. Seker S, Aydin N (2020) Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.12.183

    Article  Google Scholar 

  28. Kumar RR, Mishra S, Kumar C (2017) Prioritizing the solution of cloud service selection using integrated MCDM methods under Fuzzy environment. J Supercomput 73(11):4652–4682. https://doi.org/10.1007/s11227-017-2039-1

    Article  Google Scholar 

  29. Hanine M, Boutkhoum O, Tikniouine A, Agouti T (2017) An application of OLAP/GIS-Fuzzy AHP-TOPSIS methodology for decision making: Location selection for landfill of industrial wastes as a case study. KSCE J Civ Eng 21(6):2074–2084. https://doi.org/10.1007/s12205-016-0114-4

    Article  Google Scholar 

  30. Dey B, Bairagi B, Sarkar B, Sanyal SK (2016) Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. Int J Manag Sci Eng Manag 11(4):262–278. https://doi.org/10.1080/17509653.2015.1086964

    Article  Google Scholar 

  31. Dortaj A, Maghsoudy S, Doulati Ardejani F, Eskandari Z (2020) A hybrid multi-criteria decision making method for site selection of subsurface dams in semi-arid region of Iran. Groundw Sustain Dev 10:100284. https://doi.org/10.1016/j.gsd.2019.100284

    Article  Google Scholar 

  32. Sennaroglu B, Varlik Celebi G (2018) A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transp Res Part D: Transp Environ 59:160–173. https://doi.org/10.1016/j.trd.2017.12.022

    Article  Google Scholar 

  33. Mousavi SM, Tavakkoli-Moghaddam R, Heydar M, Ebrahimnejad S (2013) Multi-criteria decision making for plant location selection: an integrated delphi-AHP-PROMETHEE methodology. Arab J Sci Eng 38(5):1255–1268. https://doi.org/10.1007/s13369-012-0361-8

    Article  Google Scholar 

  34. Wu X, Zhang C, Jiang L, Liao H (2020) An integrated method with PROMETHEE and conflict analysis for qualitative and quantitative decision-making: case study of site selection for wind power plants. Cogn Comput 12(1):100–114. https://doi.org/10.1007/s12559-019-09675-7

    Article  Google Scholar 

  35. Safaei Ghadikolaei A, Khalili Esbouei S, Antucheviciene J (2014) Applying fuzzy MCDM for financial performance evaluation of Iranian companies. Technol Econ Dev Econ 20(2):274–291. https://doi.org/10.3846/20294913.2014.913274

    Article  Google Scholar 

  36. Zhou F, Wang X, Samvedi A (2018) Quality improvement pilot program selection based on dynamic hybrid MCDM approach. Ind Manag Data Syst 118:144–163

    Article  Google Scholar 

  37. Jeya Girubha R, Vinodh S (2012) Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Mater Des 37:478–486. https://doi.org/10.1016/j.matdes.2012.01.022

    Article  MATH  Google Scholar 

  38. Jain V, Sangaiah AK, Sakhuja S, Thoduka N, Aggarwal R (2018) Supplier selection using fuzzy AHP and TOPSIS: a case study in the Indian automotive industry. Neural Comput Appl 29(7):555–564. https://doi.org/10.1007/s00521-016-2533-z

    Article  Google Scholar 

  39. Galankashi MR, Helmi SA, Hashemzahi P (2016) Supplier selection in automobile industry: a mixed balanced scorecard–fuzzy AHP approach. Alex Eng J 55(1):93–100. https://doi.org/10.1016/j.aej.2016.01.005

    Article  Google Scholar 

  40. Gupta S, Soni U, Kumar G (2019) Green supplier selection using multi-criterion decision making under fuzzy environment: a case study in automotive industry. Comput Ind Eng 136:663–680. https://doi.org/10.1016/j.cie.2019.07.038

    Article  Google Scholar 

  41. Moradian M, Modanloo V, Aghaiee S (2019) Comparative analysis of multi criteria decision making techniques for material selection of brake booster valve body. J Traffic Transp Eng (Engl Edn) 6(5):526–534. https://doi.org/10.1016/j.jtte.2018.02.001

    Article  Google Scholar 

  42. Hadian H, Chahardoli S, Golmohammadi A-M, Mostafaeipour A (2019) A practical framework for supplier selection decisions with an application to the automotive sector. Int J Prod Res 58:2997–3014. https://doi.org/10.1080/00207543.2019.1624854

    Article  Google Scholar 

  43. Dweiri F, Kumar S, Khan SA, Jain V (2016) Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Syst Appl 62:273–283. https://doi.org/10.1016/j.eswa.2016.06.030

    Article  Google Scholar 

  44. Kabir G, Sumi RS (2015) Hazardous waste transportation firm selection using fuzzy analytic hierarchy and PROMETHEE methods. Int J Shipp Transp Logist 7(2):115–136. https://doi.org/10.1504/IJSTL.2015.067847

    Article  Google Scholar 

  45. Xu T, Moon DH, Baek SG (2011) A simulation study integrated with analytic hierarchy process (AHP) in an automotive manufacturing system. Simulation 88(4):450–463. https://doi.org/10.1177/0037549711407781

    Article  Google Scholar 

  46. Sadeghzadeh K, Salehi MB (2011) Mathematical analysis of fuel cell strategic technologies development solutions in the automotive industry by the TOPSIS multi-criteria decision making method. Int J Hydrog Energy 36(20):13272–13280. https://doi.org/10.1016/j.ijhydene.2010.07.064

    Article  Google Scholar 

  47. Wu X, Liao H (2018) An approach to quality function deployment based on probabilistic linguistic term sets and ORESTE method for multi-expert multi-criteria decision making. Inf Fusion 43:13–26. https://doi.org/10.1016/j.inffus.2017.11.008

    Article  Google Scholar 

  48. Nestic S, Lampón JF, Aleksic A, Cabanelas P, Tadic D (2019) Ranking manufacturing processes from the quality management perspective in the automotive industry. Expert Syst 36(6):e12451. https://doi.org/10.1111/exsy.12451

    Article  Google Scholar 

  49. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  MathSciNet  MATH  Google Scholar 

  50. Saaty RW (1987) The analytic hierarchy process—what it is and how it is used. Math Model 9(3):161–176. https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang J-J, Yang D-L (2007) Using a hybrid multi-criteria decision aid method for information systems outsourcing. Comput Oper Res 34(12):3691–3700. https://doi.org/10.1016/j.cor.2006.01.017

    Article  MATH  Google Scholar 

  52. Mohsen O, Fereshteh N (2017) An extended VIKOR method based on entropy measure for the failure modes risk assessment—a case study of the geothermal power plant (GPP). Saf Sci 92:160–172. https://doi.org/10.1016/j.ssci.2016.10.006

    Article  Google Scholar 

  53. Triantaphyllou E, Mann SH (1989) An examination of the effectiveness of multi-dimensional decision-making methods: a decision-making paradox. Decis Support Syst 5(3):303–312. https://doi.org/10.1016/0167-9236(89)90037-7

    Article  Google Scholar 

  54. Opricovic S (1998) Multicriteria optimization of civil engineering systems. Fac Civ Eng Belgrade 2(1):5–21

    MathSciNet  Google Scholar 

  55. Chitsaz N, Banihabib ME (2015) Comparison of different multi criteria decision-making models in prioritizing flood management alternatives. Water Resour Manage 29(8):2503–2525. https://doi.org/10.1007/s11269-015-0954-6

    Article  Google Scholar 

  56. Govindan K, Jepsen MB (2016) ELECTRE: a comprehensive literature review on methodologies and applications. Eur J Oper Res 250(1):1–29

    Article  MathSciNet  Google Scholar 

  57. Roubens M (1982) Preference relations on actions and criteria in multicriteria decision making. Eur J Oper Res 10(1):51–55. https://doi.org/10.1016/0377-2217(82)90131-X

    Article  MATH  Google Scholar 

  58. Alinezhad A, Khalili J (2019) ELECTRE I-II–III Methods. In: Alinezhad A, Khalili J (eds) New Methods and Applications in Multiple Attribute Decision Making (MADM). Springer International Publishing, Cham, pp 167–180. https://doi.org/10.1007/978-3-030-15009-9_23

    Chapter  MATH  Google Scholar 

  59. Roy BJT, Decision, (1991) The outranking approach and the foundations of electre methods. Theor Decis 31(1):49–73. https://doi.org/10.1007/bf00134132

    Article  MathSciNet  Google Scholar 

  60. Alinezhad A, Khalili J (2019) ORESTE method. In: Alinezhad A, Khalili J (eds) New methods and applications in multiple attribute decision making (MADM). Springer International Publishing, Cham, pp 17–21. https://doi.org/10.1007/978-3-030-15009-9_3

    Chapter  MATH  Google Scholar 

  61. Alinezhad A, Khalili J (2019) PROMETHEE I-II-III Methods. In: Alinezhad A, Khalili J (eds) New Methods and Applications in Multiple Attribute Decision Making (MADM). Springer International Publishing, Cham, pp 29–39. https://doi.org/10.1007/978-3-030-15009-9_5

  62. Abedi M, Ali Torabi S, Norouzi G-H, Hamzeh M, Elyasi G-R (2012) PROMETHEE II: a knowledge-driven method for copper exploration. Comput Geosci 46:255–263. https://doi.org/10.1016/j.cageo.2011.12.012

    Article  Google Scholar 

  63. Zyoud SH, Fuchs-Hanusch D (2017) A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst Appl 78:158–181. https://doi.org/10.1016/j.eswa.2017.02.016

    Article  Google Scholar 

  64. Zhang H, Gu C-l, Gu L-w, Zhang Y (2011) The evaluation of tourism destination competitiveness by TOPSIS & information entropy: a case in the Yangtze river delta of China. Tour Manage 32(2):443–451. https://doi.org/10.1016/j.tourman.2010.02.007

    Article  Google Scholar 

  65. Alinezhad A, Khalili J (2019) VIKOR method. In: Alinezhad A, Khalili J (eds) New methods and applications in multiple attribute decision making (MADM). Springer International Publishing, Cham, pp 23–27. https://doi.org/10.1007/978-3-030-15009-9_4

    Chapter  MATH  Google Scholar 

  66. Opricovic S, Tzeng G-H (2007) Extended VIKOR method in comparison with outranking methods. Eur J Oper Res 178(2):514–529. https://doi.org/10.1016/j.ejor.2006.01.020

    Article  MATH  Google Scholar 

  67. Mulliner E, Malys N, Maliene V (2016) Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega 59:146–156. https://doi.org/10.1016/j.omega.2015.05.013

    Article  Google Scholar 

  68. Si J, Marjanovic-Halburd L, Nasiri F, Bell S (2016) Assessment of building-integrated green technologies: a review and case study on applications of multi-criteria decision making (MCDM) method. Sustain Urban Areas 27:106–115. https://doi.org/10.1016/j.scs.2016.06.013

    Article  Google Scholar 

  69. MacCarthy BL, Atthirawong W (2003) Factors affecting location decisions in international operations—a Delphi study. Int J Oper Prod Manag 23(7):794–818. https://doi.org/10.1108/01443570310481568

    Article  Google Scholar 

  70. Coughlin CC, Terza JV, Arromdee V (1991) State characteristics and the location of foreign direct investment within the United States. Rev Econ Stat 73:675–683

    Article  Google Scholar 

  71. McMillan TE (1965) Why manufacturers choose plant locations vs Determinants of Plant Locations. Land Econ 41(3):239–246. https://doi.org/10.2307/3144856

    Article  Google Scholar 

  72. Schmenner RW (1982) Making business location decisions. Prentice Hall

    Google Scholar 

  73. Mehren GL (1957) Plant location in theory and in practice: the economics of space, Melvin L. Greenhut. Chapel Hill: The University of North Caro. Am J Agric Econ 39(1):193–194. https://doi.org/10.2307/1233907

    Article  Google Scholar 

  74. Spooner D (1974) Some qualitative aspects of industrial movement in a problem region in the United Kingdom. Town Plan Rev 45(1):63

    Article  Google Scholar 

  75. Wheeler D, Mody A (1992) International investment location decisions: the case of US firms. J Int Econ 33(1–2):57–76

    Article  Google Scholar 

  76. PROTEMA (2016) Feasibility study automotive production in Konya.

  77. Şahin M (2020) A comprehensive analysis of weighting and multicriteria methods in the context of sustainable energy. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02922-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Şahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, M. Location selection by multi-criteria decision-making methods based on objective and subjective weightings. Knowl Inf Syst 63, 1991–2021 (2021). https://doi.org/10.1007/s10115-021-01588-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-021-01588-y

Keywords

Navigation