Skip to main content
Log in

Preferences-based learning of multinomial logit model

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

We learn the parameters of the popular multinomial logit model to gain insights about a DM’s decision process. We accomplish this objective through the recent algorithmic advances in the emerging field of preference learning. The empirical evaluation of the proposed approach is performed on a set of 12 publicly available benchmark datasets. First experimental results suggest that our approach is not only intuitively appealing, but also competitive to state-of-the-art preference learning methods in terms of the prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The estimated PIS and NIS are different in each iteration depending upon the random selection of alternatives in \(\mathcal {A}_{train}\) and \(\mathcal {A}_{test}\).

  2. http://people.kyb.tuebingen.mpg.de/spider/.

References

  1. Thurstone L (1927) A law of comparative judgement. Psychol Rev 34:273–286

    Article  Google Scholar 

  2. McFadden D (1973) Conditional logit analysis of quantitative choice behavior. In: Zaremmbka P (ed) Frontier of econometrics. Academic Press, New York

    Google Scholar 

  3. McFadden D (1978) Modeling the choice of residential location. Transp Res Rec 672:72–77

    Google Scholar 

  4. McFadden D, Train K (2000) Mixed MNL models for discrete response. J Appl Econ 15:447–470

    Article  Google Scholar 

  5. Fürnkranz J, Hüllermeier E (eds) (2010) Preference learning. Springer, Berlin

    MATH  Google Scholar 

  6. Bertsimas D, O’Hair A (2013) Learning preferences under noise and loss aversion: an optimization approach. Oper Res 61(5):1190–1199

    Article  MathSciNet  MATH  Google Scholar 

  7. Farias VF, Jagabathula S, Shah D (2013) A nonparametric approach to modeling choice with limited data. Manag Sci 59(2):305–322

    Article  Google Scholar 

  8. Negahban S, Oh S, Shah D (2016) Rank centrality: ranking from pairwise comparisons. Oper Res 65:266–287

    Article  MathSciNet  MATH  Google Scholar 

  9. Mosteller F (1951) Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations. Psychometrika 16:3–9

    Article  Google Scholar 

  10. Stern H (1990) A continuum of paired comparison models. Biometrika 77:265–273

    Article  MathSciNet  MATH  Google Scholar 

  11. McFadden D (2001) Economic choices. Am Econ Rev 91:351–378

    Article  Google Scholar 

  12. Lucas C, Griffiths TL, Xu F, Fawcett C (2009) A rational model of preference learning and choice prediction by children. Adv Neural Inf Process Syst 21:985–92

    Google Scholar 

  13. Glickman ME, Jensen ST (2005) Adaptive paired comparison design. J Stat Plan Inference 127:279–293

    Article  MathSciNet  MATH  Google Scholar 

  14. Wallenius J, Dyer JS, Fishburn PC, Steuer RE, Zionts S, Deb K (2008) Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead. Manag Sci 54:1336–1349

    Article  MATH  Google Scholar 

  15. Xanthopulos Z, Melachrinoudis E, Solomon MM (2000) Interactive multiobjective group decision making with interval parameters. Manag Sci 46(12):1585–1601

    Article  Google Scholar 

  16. Dyer JS, Fishburn PC, Steuer RE, Wallenius J, Zionts S (1992) Multiple criteria decision making, multiattribute utility theory: the next ten years. Manag Sci 38:645–654

    Article  MATH  Google Scholar 

  17. Ehtamo H, Hämäläinen RP, Heiskanen P, Teich J, Verkama M, Zionts S (1999) Generating pareto solutions in a two-party setting: constraint proposal methods. Manag Sci 45:1697–1709

    Article  MATH  Google Scholar 

  18. Pham MT, Faraji-Rad A, Toubia O, Lee L (2015) Affect as an ordinal system of utility assessment. Organ Behav Hum Decis Process 131:81–94

    Article  Google Scholar 

  19. van Ittersum K, Pennings JM (2012) Attribute-value functions as global interpretations of attribute importance. Organ Behav Hum Decis Process 119:89–102

    Article  Google Scholar 

  20. Xu Z, Da Q (2003) An overview of operators for aggregating information. Int J Intell Syst 18:953–969

    Article  MATH  Google Scholar 

  21. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    Article  MathSciNet  MATH  Google Scholar 

  22. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, New York

    Book  MATH  Google Scholar 

  23. Roy B (1968) Classement et choix en présence de points de vue multiples. Revue francaise d’automatique, d’informatique et de recherche opérationnelle. Rech Oper 2:57–75

    Google Scholar 

  24. Brans J (1982) L’ingenierie de la decision, l’laboration d’instruments d’aidea la decision. Colloque sur l’Aidea la Decision, Faculte des Sciences de l’Administration, Universite Laval

  25. Salo A (1995) Interactive decision aiding for group decision support. Eur J Oper Res 84:134–149

    Article  MATH  Google Scholar 

  26. Domencich T, McFadden DL (1975) Urban travel demand: a behavioral analysis. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  27. Train Kenneth (2003) Discrete choice methods with simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Agarwal M, Tehrani AF, Hullermeier E (2015) Preference-based learning of ideal solutions in TOPSIS-like decision models. J Multi-criteria Decis Anal 22:3–4

    Article  Google Scholar 

  29. Peterson M (2009) An introduction to decision theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  30. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, London

    MATH  Google Scholar 

  31. Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D (eds) Advances in large margin classifiers. The MIT Press, Cambridge, pp 115–132

    Google Scholar 

  32. Frank A, Asuncion A (2010) UCI machine learning repository

  33. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  34. Beliakov G, James S (2011) Citation-based journal ranks: the use of fuzzy measures. Fuzzy Sets Syst 167(1):101–119

    Article  MathSciNet  MATH  Google Scholar 

  35. Daniels H, Kamp B (1999) Applications of MLP networks to bond rating and house pricing. Neural Comput Appl 8:226–234

    Article  Google Scholar 

  36. Fürnkranz J, Hüllermeier E, Vanderlooy S (2009) Binary decomposition methods for multipartite ranking. In: Buntine W, Grobelnik M, Mladenic D, Shawe-Taylor J (eds) Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases. Springer, pp 359–374

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, M. Preferences-based learning of multinomial logit model. Knowl Inf Syst 59, 523–538 (2019). https://doi.org/10.1007/s10115-018-1215-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-018-1215-9

Keywords

Navigation