Deployment of social nets in multilayer model to identify key individuals using majority voting

Abstract

Social web and social media are evidenced to be a rich source of user-generated social content. Social media includes multiple numbers of social dimensions represented by different social networks. The identification of important player in these real-world social networks has been in high emphasis due to its effectiveness in multiple disciplines, especially in law enforcement areas working on dark networks. Many algorithms have been proposed to identify key players according to the objective of interest using suitable network centrality measures. This paper proposes a new perspective of dealing with key player identification by redefining it as a problem of “Key Individual Identification,” across multiple social dimensions. Research deals with each social dimension as a layer in the multiple-layer social network model. The proposed technique extracts a number of features from each network based on social network analysis. The features are assembled to formulate a global feature set representing the behaviors of individuals in all networks individually. The technique then attempts to find key individuals using hybrid classifiers. The results from all classifiers are formulated, and the final decision of an individual to be part of the individual key set is based on majority voting. This novel technique gives good results on a number of known networks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Allard A, Noël PA, Dubé LJ et al (2009) Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics. Phys Rev E 79:036113

    Article  Google Scholar 

  2. 2.

    Al-Garadi MA, Varathan KD, Ravana SD et al (2016) Identifying the influential spreaders in multilayer interactions of online social networks. J Intell Fuzzy Syst 31(5):2721–2735

    Article  Google Scholar 

  3. 3.

    Battiston F, Nicosia V, Latora V (2014) Structural measures for multiplex networks. Phys Rev E 89:032804

    Article  Google Scholar 

  4. 4.

    Berlingerio M, Coscia M, Giannotti F et al (2011) The pursuit of hobbies: analysis of hubs in large multidimensional networks. J Comput Sci 2:223–237

    Article  Google Scholar 

  5. 5.

    Berlingerio M, Coscia M, Giannotti F et al (2013) Multidimensional networks: foundations of structural analysis. WWW Internet Web Info Syst 16:567–593

    Google Scholar 

  6. 6.

    Blondel VD, Guillaume JL, Lambiotte R et al (2008) Fast unfolding of communities in large networks. J Stat Mech 2008:P10008

    Article  Google Scholar 

  7. 7.

    Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23(3):191–201

    Article  Google Scholar 

  8. 8.

    Borgatti S (2002) The key player problem, presented in the proceedings of the National Academy of Sciences Workshop on Terrorism. National Academy of Sciences, Washington DC

    Google Scholar 

  9. 9.

    Borgatti SP (2005) Centrality and network flow. Soc Netw 27(1):55–71

    MathSciNet  Article  Google Scholar 

  10. 10.

    Borgatti SP (2006) Identifying sets of key players in a social network. Comput Math Organ Theory 1:21–34

    MATH  Article  Google Scholar 

  11. 11.

    Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28(4):466–484

    Article  Google Scholar 

  12. 12.

    Borgatti SP, Mehra A, Brass DJ et al (2009) Network analysis in the social sciences. Science 323(5916):892–895

    Article  Google Scholar 

  13. 13.

    Bothorel C, Cruz JD, Magnani M et al (2015) Clustering attributed graphs: models, measures, and methods. Netw Sci 3(3):408–444

    Article  Google Scholar 

  14. 14.

    Bródka P, Stawiak P, Kazienko P (2011) Shortest path discovery in the multi-layered social network. In: Advances in social networks analysis and mining (ASONAM), IEEE, pp 497–501

  15. 15.

    Bródka P, Kazienko P, Musiał K et al (2012) Analysis of neighborhoods in multi-layered dynamic social networks. Int J Comput Intell Syst 5(3):582–596

    Article  Google Scholar 

  16. 16.

    Burt RS, Schott T (1989) Relational contents in multiple network systems. Research Methods in Social Network Analysis. University of California, Irvine, pp 185–213

    Google Scholar 

  17. 17.

    Butt WH, Akram MU, Khan SA et al (2014) Covert network analysis for key player detection and event prediction using a hybrid classifier. Sci World J 2014:615431. https://doi.org/10.1155/2014/615431

  18. 18.

    Cai D, Shao Z, He X et al (2005) Community mining from multi-relational networks. In: 9th European conference on principles and practice of knowledge discovery in databases

  19. 19.

    Capocci A, Servedio V, Colaiori F et al (2006) Preferential attachment in the growth of social networks: the internet encyclopedia Wikipedia. Phys Rev E 74(3):036116

    Article  Google Scholar 

  20. 20.

    Chawla N, Bowyer K, Hall L et al (2000). SMOTE: synthetic minority over-sampling technique. In: International conference of knowledge based computer systems, National Center for Software Technology, Mumbai, India, Allied Press, pp 46–57

  21. 21.

    Cheng X, Dale C, Liu J (2008) Statistics and social networking of YouTube videos. In: 16th International workshop on quality of service, IEEE, pp 229–238

  22. 22.

    Conover MD, Gonçalves B, Ratkiewicz J et al (2011) Predicting the political alignment of Twitter users. In: Privacy, security, risk, and trust (passat), IEEE third international conference on social computing (socialcom), IEEE, pp 192–199

  23. 23.

    Coscia M, Rossetti G, Pennacchioli D et al (2013) You know because I know: a multidimensional network approach to human resources problem. In: IEEE/ACM international conference on advances in social networks analysis and mining, ACM, pp 434–441

  24. 24.

    De Domenico M, Sole-Ribalta A, Omodei E et al (2015) Ranking in interconnected multilayer networks reveals versatile nodes. Nat Commun 6:6868

    Article  Google Scholar 

  25. 25.

    De Domenico M, Solé-Ribalta A, Omodei E et al (2015) Centrality in interconnected multilayer networks. Nat Commun 6:6868

  26. 26.

    De Domenico M, Porter MA, Arenas A (2015) Multilayer analysis and visualization of networks. J Complex Netw 3:159–176

    Article  Google Scholar 

  27. 27.

    Freeman LC (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239

    MathSciNet  Article  Google Scholar 

  28. 28.

    Gluckman M (1955) The judicial process among the Barotse of Northern Rhodesia. Manchester University Press, Manchester

    Google Scholar 

  29. 29.

    Gómez S, Diaz-Guilera A, Gomez-Gardeñes G et al (2013) Diffusion dynamics on multiplex networks. Phys Rev Lett 110:028701

    Article  Google Scholar 

  30. 30.

    Hage P, Harary F (1995) Eccentricity and centrality in networks. Soc Netw 17:57–63

    Article  Google Scholar 

  31. 31.

    Halu A, Mondragon RJ, Panzarasa P et al (2013) Multiplex pagerank. PLoS ONE 8:e78293

    Article  Google Scholar 

  32. 32.

    Harrer A, Schmidt A (2012) An approach for the block modeling in multi-relational networks. In: International conference on advances in social networks analysis and mining (ASONAM), IEEE, pp 591–598

  33. 33.

    Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Holland PW, Leinhardt S (1975) Local structure in social networks. In: Heise D (ed) Sociological methodology. Jossey-Bass, San Francisco

    Google Scholar 

  35. 35.

    Hope T, Nishimura T, Takeda H (2006) An integrated method for social network extraction. In: 15th International conference on World Wide Web (WWW’06), New York, NY, USA, ACM, pp 845–846

  36. 36.

    Hristova D, Musolesi M, Mascolo C (2014) Keep your friends close and your Facebook friends closer: a multiplex network approach to the analysis of offline and online social ties. In: International conference on weblogs and social media (ICWSM). AAAI

  37. 37.

    Huberman B, Romero D, Wu F(2009) Social networks that matter: Twitter under the microscope. First Monday, 1–5. arXiv:0812.1045v1

  38. 38.

    Kazienko P, Musial K, Kajdanowicz T (2011) Multidimensional social network and its application to the social recommender system. IEEE Trans Syst Man Cybern A Syst Hum 41:746–759

    Article  Google Scholar 

  39. 39.

    Kim J, Lee JG (2015) Community detection in multi-layer graphs: a survey. SIGMOD Rec ACM 44(3):37–48

    Article  Google Scholar 

  40. 40.

    Kivelä M, Arenas A, Barthelemy M et al (2014) Multilayer networks. J Complex Netw 2:203–271

    Article  Google Scholar 

  41. 41.

    Kolda TG, Bader BW, Kenny JP (2005) Higher order web link analysis using multilinear algebra. Proceedings of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, TX, pp 242–249

  42. 42.

    Krebs VE (2002) Mapping networks of terrorist cells. Connections 24(3):43–52

    Google Scholar 

  43. 43.

    Ku L-W, Liang Y-T, Chen H-H (2006) Opinion extraction, summarization, and tracking in news and blog corpora. In: AAAI-CAAW’06

  44. 44.

    Lathia N, Hailes S, Capra L (2008) kNN CF: a temporal social network. In: ACM conference on recommender systems, ACM, pp 227–234

  45. 45.

    Lin dS, Chalupsky H (2008) Discovering and explaining abnormal nodes in semantic graphs. IEEE Trans Knowl Data Eng 20(8):1039–1052

    Article  Google Scholar 

  46. 46.

    Liu W, Chen P-Y, Yeung S et al (2017) Principled multilayer network embedding. In: Data mining workshops (ICDMW), IEEE

  47. 47.

    Magnani M, Rossi L (2011) The ML-model for multi-layer social networks. In: Proceedings of 2011 ASONAM international conference on advances in social networks analysis and mining, Kaohsiung City, Taiwan, pp 5–12

  48. 48.

    Magnani M, Rossi L (2013) Pareto distance for multi-layer network analysis, social computing, behavioral-cultural modeling, and prediction (SBP). Lect Notes Comput Sci 7812:249–256

    Article  Google Scholar 

  49. 49.

    McGuire RM (2012) Weighted key player problem for social network analysis. Dissertation, Air Force Institute of Technology, BiblioScholar. ISBN: 978-1288395736

  50. 50.

    Meizhu L, Qi Z, Qi L et al (2015). Identification of influential nodes in a network of networks. arXiv:1501.05714v1

  51. 51.

    Memon N, Harkiolakis N, Hicks DL (2008) Detecting high-value individuals in covert networks: 7/7 London Bombing Case Study. In: Proceedings of the IEEE/ACS international conference on computer systems and applications, pp 206–215

  52. 52.

    Memon N, Larsen HL, Hicks DL, Harkiolakis N (2008) Retracted: detecting hidden hierarchy in terrorist networks: some case studies. In: Yang CC et al (eds) Intelligence and security informatics. ISI 2008. Lecture Notes in Computer Science, vol 5075. Springer, Berlin

  53. 53.

    Memon N, Qureshi AR, Wiil UK et al (2009) Novel algorithms for subgroup detection in terrorist networks. In: Presented at the international conference on availability, reliability, and security, Fukuoka Institute of Technology, Fukuoka, Japan

  54. 54.

    Melville P, Sindhwani V, Lawrence R et al (2009) Machine learning for social media analytics. In: Machine learning symposium, New York Academy of Sciences, New York, November 2009. http://www.prem-melville.com/. Accessed Jan 03 2017

  55. 55.

    Michalski R, Kazienko P, Król D (2012) Predicting social network measures using machine learning approach. In: Advances in social networks analysis and mining (ASONAM), IEEE/ACM

  56. 56.

    Mucha PJ, Porter MA (2010) Communities in multislice voting networks. Chaos 20:041108

    Article  Google Scholar 

  57. 57.

    Mucha PJ, Richardson T, Macon K et al (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Nieminen J (1974) On the centrality in a graph. Scand J Psychol 15(1):332–336

    Article  Google Scholar 

  59. 59.

    Pempek TA, Yermolayeva YA, Calvert SL (2009) College students’ social networking experiences on Facebook. J Appl Dev Psychol 30(3):227–238

    Article  Google Scholar 

  60. 60.

    Radicchi F, Arenas A (2013) Abrupt transition in the structural formation of interconnected networks. Nat Phys 9:717–720

    Article  Google Scholar 

  61. 61.

    Roberts N, Everton SF (2011) Roberts and Everton terrorist data: Noordin top terrorist network (subset). Machine-readable data file

  62. 62.

    Sageman M (2004) Understanding terror networks. University of Pennsylvania Press, Pennsylvania

    Google Scholar 

  63. 63.

    Salehi M, Sharma R, Marzolla M (2015) Spreading processes in multilayer networks. IEEE Trans Netw Sci Eng 2(2):65–83

    Article  Google Scholar 

  64. 64.

    Scott J (2000) Social network analysis: a handbook. SAGE Publications, London

    Google Scholar 

  65. 65.

    Solá L, Romance M, Criado R et al (2013) Eigenvector centrality of nodes in multiplex networks. Chaos 3:033131

    MATH  Article  Google Scholar 

  66. 66.

    Solé-Ribalta A, De Domenico M, Gómez S (2014) Centrality rankings in multiplex networks. In: ACM conference on web science, ACM, pp 149–155

  67. 67.

    Sparrow MK (1991) The application of network analysis to criminal intelligence: an assessment of the prospects. Soc Netw 13(3):251–274

    Article  Google Scholar 

  68. 68.

    Tang X, Yang CC (2010) Generalizing terrorist social networks with k-nearest neighbor and edge-betweenness for social network integration and privacy preservation. In: International conference on intelligence and security informatics, IEEE

  69. 69.

    Tyler JR, Wilkinson DM, Huberman BA (2003) Email as spectroscopy: automated discovery of community structure within organizations. In: Huysman M (ed) Communities and technologies. Kluwer, B.V., Deventer, pp 81–96

    Google Scholar 

  70. 70.

    Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, New York

    Google Scholar 

  71. 71.

    Wang P, Robins G, Pattison P et al (2013) Exponential random graph models for multilevel networks. Soc Netw 35:96–115

    Article  Google Scholar 

  72. 72.

    Wang D, Wang H, Zou X (2017) Identifying key nodes in multilayer networks based on tensor decomposition. Chaos Interdisip J Nonlinear Sci 10(1063/1):4985185

    Google Scholar 

  73. 73.

    Wiil UK, Memon N, Karampelas P (2010) Detecting new trends in terrorist networks. In: International conference on advances in social networks analysis and mining

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fozia Noor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noor, F., Shah, A., Akram, M.U. et al. Deployment of social nets in multilayer model to identify key individuals using majority voting. Knowl Inf Syst 58, 113–137 (2019). https://doi.org/10.1007/s10115-018-1187-9

Download citation

Keywords

  • Social network analysis
  • Multilayer network
  • Key player identification
  • Ensemble classification
  • Majority voting
  • Ego network analysis