Analyzing large-scale human mobility data: a survey of machine learning methods and applications

  • Eran Toch
  • Boaz Lerner
  • Eyal Ben-Zion
  • Irad Ben-Gal
Survey Paper
  • 99 Downloads

Abstract

Human mobility patterns reflect many aspects of life, from the global spread of infectious diseases to urban planning and daily commute patterns. In recent years, the prevalence of positioning methods and technologies, such as the global positioning system, cellular radio tower geo-positioning, and WiFi positioning systems, has driven efforts to collect human mobility data and to mine patterns of interest within these data in order to promote the development of location-based services and applications. The efforts to mine significant patterns within large-scale, high-dimensional mobility data have solicited use of advanced analysis techniques, usually based on machine learning methods, and therefore, in this paper, we survey and assess different approaches and models that analyze and learn human mobility patterns using mainly machine learning methods. We categorize these approaches and models in a taxonomy based on their positioning characteristics, the scale of analysis, the properties of the modeling approach, and the class of applications they can serve. We find that these applications can be categorized into three classes: user modeling, place modeling, and trajectory modeling, each class with its characteristics. Finally, we analyze the short-term trends and future challenges of human mobility analysis.

Keywords

Human mobility patterns Mobile phones Machine learning Data mining 

Notes

Acknowledgements

This work is supported by the Israeli Ministry of Science, Technology, and Space, Grant No. 3-8709: Learning and mining mobility patterns using stochastic models. We would like to thank Omer Barak and Gabriella Cohen for their help in collecting data for the survey.

References

  1. 1.
    Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S (2011) From movement tracks through events to places: extracting and characterizing significant places from mobility data. In: 2011 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 161–170Google Scholar
  2. 2.
    Andrienko N, Andrienko G, Stange H, Liebig T, Hecker D (2012) Visual analytics for understanding spatial situations from episodic movement data. Künstliche Intell 26(3):241–251CrossRefGoogle Scholar
  3. 3.
    Andrienko G, Divanis AG, Gruteser M, Kopp C, Liebig T, Rechert K (2013) Report from Dagstuhl: the liberation of mobile location data and its implications for privacy research. ACM SIGMOBILE Mob Comput Commun Rev 17(2):7–18CrossRefGoogle Scholar
  4. 4.
    Ashbrook D, Starner T (2003) Using GPS to learn significant locations and predict movement across multiple users. Pers Ubiquitous Comput 7(5):275–286CrossRefGoogle Scholar
  5. 5.
    Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A (2009) Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci 106(51):21484–21489CrossRefGoogle Scholar
  6. 6.
    Barak O, Cohen G, Toch E (2016) Anonymizing mobility data using semantic cloaking. Pervasive Mob Comput 28:102–112CrossRefGoogle Scholar
  7. 7.
    Barnes RM (1958) Time and motion study. Wiley, New YorkGoogle Scholar
  8. 8.
    Becker RA, Caceres R, Hanson K, Loh JM, Urbanek S, Varshavsky A, Volinsky C (2011) A tale of one city: using cellular network data for urban planning. IEEE Pervasive Comput 10(4):18–26CrossRefGoogle Scholar
  9. 9.
    Bengtsson L, Lu X, Thorson A, Garfield R, Von Schreeb J (2011) Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med 8(8):1001083CrossRefGoogle Scholar
  10. 10.
    Ben-Zion E, Lerner B (2017) Learning human behaviors and lifestyle by capturing temporal relations in mobility patterns. In: Proceedings of the European symposium on artificial networks, computational intelligence and machine learning (ESANN), BrugesGoogle Scholar
  11. 11.
    Berlingerio M, Calabrese F, Di Lorenzo G, Nair R, Pinelli F, Sbodio ML (2013) Allaboard: a system for exploring urban mobility and optimizing public transport using cellphone data. In: Machine learning and knowledge discovery in databases. Springer, pp 663–666Google Scholar
  12. 12.
    Bricka SG, Sen S, Paleti R, Bhat CR (2012) An analysis of the factors influencing differences in survey-reported and GPS-recorded trips. Transp Res Part C Emerg Technol 21(1):67–88CrossRefGoogle Scholar
  13. 13.
    Brockmann D, Hufnagel L, Geisel T (2006) The scaling laws of human travel. Nature 439(7075):462–465CrossRefGoogle Scholar
  14. 14.
    Buthpitiya S, Zhang Y, Dey AK, Griss M (2011) n-gram geo-trace modeling. In: Lyons K, Hightower J, Huang EM (eds) Pervasive computing. Lecture notes in computer science, vol 6696. Springer, Berlin, pp 97–114Google Scholar
  15. 15.
    Calabrese F, Colonna M, Lovisolo P, Parata D, Ratti C (2011) Real-time urban monitoring using cell phones: a case study in Rome. IEEE Trans Intell Transp Syst 12(1):141–151CrossRefGoogle Scholar
  16. 16.
    Cao X, Cong G, Jensen CS (2010) Mining significant semantic locations from GPS data. Proc VLDB Endow 3:1009–1020CrossRefGoogle Scholar
  17. 17.
    Castro PS, Zhang D, Chen C, Li S, Pan G (2013) From taxi GPS traces to social and community dynamics: a survey. ACM Comput Surv (CSUR) 46(2):17CrossRefGoogle Scholar
  18. 18.
    Castro PS, Zhang D, Li S (2012) Urban traffic modelling and prediction using large scale taxi GPS traces. In: Pervasive computing. Lecture notes in computer science, vol 7319. Springer, Berlin, pp 57–72Google Scholar
  19. 19.
    Cheng AJ, Chen YY, Huang YT, Hsu WH, Liao HYM (2011) Personalized travel recommendation by mining people attributes from community-contributed photos. In: Proceedings of the 19th ACM international conference on multimedia. ACM, pp 83–92Google Scholar
  20. 20.
    Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1082–1090Google Scholar
  21. 21.
    Cranshaw J, Toch E, Hong J, Kittur A, Sadeh N (2010) Bridging the gap between physical location and online social networks. In: Proceedings of the 12th ACM international conference on ubiquitous computing. ACM, pp 119–128Google Scholar
  22. 22.
    Cui J, Liu F, Janssens D, An S, Wets G, Cools M (2016) Detecting urban road network accessibility problems using taxi GPS data. J Transp Geogr 51:147–157CrossRefGoogle Scholar
  23. 23.
    Do T-M-T, Gatica-Perez D (2013) The places of our lives: visiting patterns and automatic labeling from longitudinal smartphone data, Technical report EPFL-ARTICLE-192391Google Scholar
  24. 24.
    Douglass CJ, Bovls HW (1957) Predicting local travel in urban regions. Pap Reg Sci 3(1):183–197Google Scholar
  25. 25.
    Eagle N, Pentland AS (2006) Reality mining: sensing complex social systems. Pers Ubiquitous Comput 10(4):255–268CrossRefGoogle Scholar
  26. 26.
    Eagle N, Pentland AS (2009) Eigenbehaviors: identifying structure in routine. Behav Ecol Sociobiol 63(7):1057–1066CrossRefGoogle Scholar
  27. 27.
    Eagle N, Pentland AS, Lazer D (2009) Inferring friendship network structure by using mobile phone data. Proc Natl Acad Sci 106(36):15274–15278CrossRefGoogle Scholar
  28. 28.
    Ekman F, Keränen, A, Karvo J, Ott J (2008) Working day movement model. In: Proceedings of the 1st ACM SIGMOBILE workshop on mobility models. ACM, pp 33–40Google Scholar
  29. 29.
    Espin-Noboa L, Lemmerich F, Singer P, Strohmaier M (2016) Discovering and characterizing mobility patterns in urban spaces: a study of Manhattan taxi data. In: WWW’16 companion, pp 537–542Google Scholar
  30. 30.
    Etter V, Kafsi M, Kazemi E (2012) Been there, done that: What your mobility traces reveal about your behavior. In: Mobile data challenge by Nokia Workshop, in conjunction with international conference on pervasive computing, number EPFL-CONF-178426Google Scholar
  31. 31.
    Fan Z, Song X, Shibasaki R (2014) CitySpectrum: a non-negative tensor factorization approach. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing. ACM, pp 213–223Google Scholar
  32. 32.
    Farrahi K, Gatica-Perez D (2011) Discovering routines from large-scale human locations using probabilistic topic models. ACM Trans Intell Syst Technol (TIST) 2(1):3Google Scholar
  33. 33.
    Frias-Martinez V, Soguero-Ruiz C, Frias-Martinez E, Josephidou M (2013) Forecasting socioeconomic trends with cell phone records. In: Proceedings of the 3rd ACM symposium on computing for development. ACMGoogle Scholar
  34. 34.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, data mining, inference, and prediction. Springer series in statistics. Springer, BerlinMATHGoogle Scholar
  35. 35.
    Giannotti F, Nanni M, Pedreschi D, Pinelli F (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 330–339Google Scholar
  36. 36.
    Golle P, Partridge K (2009) On the anonymity of home/work location pairs. In: Tokuda H et al. (eds) Pervasive, LNCS 5538. Springer, pp 390–397Google Scholar
  37. 37.
    Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782CrossRefGoogle Scholar
  38. 38.
    Hariharan R, Toyama K (2004) Project lachesis: parsing and modeling location histories. In: Egenhofer MJ et al. (eds) Geographic information science, LNCS 3234. Springer, pp 106–124Google Scholar
  39. 39.
    Jensen B, Larsen JE, Jensen K, Larsen J, Hansen LK (2010) Estimating human predictability from mobile sensor data. In: 2010 IEEE international workshop on machine learning for signal processing (MLSP). IEEE, pp 196–201Google Scholar
  40. 40.
    Jiang S, Fiore GA, Yang Y, Ferreira Jr. J, Frazzoli E, González MC (2013) A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the 2nd ACM SIGKDD international workshop on urban computing. ACM, p 2Google Scholar
  41. 41.
    Kagan E, Ben-Gal I (2013) Probabilistic search for tracking targets: theory and modern applications. Wiley, HobokenCrossRefGoogle Scholar
  42. 42.
    Kagan E, Ben-Gal I (2015) Search and foraging: individual motion and swarm dynamics. CRC Press, Boca RatonCrossRefMATHGoogle Scholar
  43. 43.
    Kitamura R, Chen C, Pendyala RM, Narayanan R (2000) Micro-simulation of daily activity-travel patterns for travel demand forecasting. Transportation 27(1):25–51CrossRefGoogle Scholar
  44. 44.
    Khoroshevsky F, Lerner B (2017) Human mobility-pattern discovery and next-place prediction from GPS data. In: Schwenker F, Scherer S (eds) Multimodal pattern recognition of social signals in human computer interaction (MPRSS). Lecture notes in computer science, vol 10183. Springer, BerlinGoogle Scholar
  45. 45.
    Krings G, Calabrese F, Ratti C, Blondel VD (2009) Urban gravity: a model for inter-city telecommunication flows. J Stat Mech Theory Exp 2009(07):L07003CrossRefGoogle Scholar
  46. 46.
    Krishnamachari B, Gau R-H, Wicker SB, Haas ZJ (2004) Optimal sequential paging in cellular wireless networks. Wirel Netw 10(2):121–131CrossRefGoogle Scholar
  47. 47.
    Krumm J (2009) A survey of computational location privacy. Pers Ubiquitous Comput 13(6):391–399CrossRefGoogle Scholar
  48. 48.
    Krumm J, Horvitz E (2006) Predestination: inferring destinations from partial trajectories. In: UbiComp 2006: ubiquitous computing. Springer, pp 243–260Google Scholar
  49. 49.
    Krumm J, Rouhana D (2013) Placer: semantic place labels from diary data. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing. ACM, pp 163–172Google Scholar
  50. 50.
    Lee J-G, Han J, Li X, Cheng H (2011) Mining discriminative patterns for classifying trajectories on road networks. IEEE Trans Knowl Data Eng 23(5):713–726CrossRefGoogle Scholar
  51. 51.
    Lee J-G, Han J, Whang K-Y (2007) Trajectory clustering: A partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data. ACM, pp 593–604Google Scholar
  52. 52.
    Li B, Zhang D, Sun L, Chen C, Li S, Qi G, Yang Q (2011) Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset. In: 2011 IEEE international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 63–68Google Scholar
  53. 53.
    Lichman M, Smyth P (2014) Modeling human location data with mixtures of kernel densities. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 35–44Google Scholar
  54. 54.
    Lin M, Hsu W-J (2014) Mining GPS data for mobility patterns: a survey. Pervasive Mob Comput 12:1–16CrossRefGoogle Scholar
  55. 55.
    Lin M, Hsu W-J, Lee ZQ (2013) Detecting modes of transport from unlabelled positioning sensor data. J Locat Based Serv 7(4):272–290CrossRefGoogle Scholar
  56. 56.
    Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. IEEE Tran Syst Man Cybern Part C (Appl Rev) 37(6):1067–1080CrossRefGoogle Scholar
  57. 57.
    Lu X, Bengtsson L, Holme P (2012) Predictability of population displacement after the 2010 Haiti earthquake. Proc Natl Acad Sci 109(29):11576–11581CrossRefGoogle Scholar
  58. 58.
    Luo W, Tan H, Chen L, Ni LM (2013) Finding time period-based most frequent path in big trajectory data. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data. ACM, pp 713–724Google Scholar
  59. 59.
    Mao B, Cao J, Wu Z, Huang G, Li J (2012) Predicting driving direction with weighted Markov model. In: Advanced data mining and applications. Springer, pp 407–418Google Scholar
  60. 60.
    Mazimpaka JD, Timpf S (2006) Trajectory data mining: a review of methods and applications. J Spat Inf Sci 2006(06):61–69Google Scholar
  61. 61.
    Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 637–646Google Scholar
  62. 62.
    Montjoye Y-A, Hidalgo CA, Verleysen M, Blondel VD (2013) Unique in the crowd: the privacy bounds of human mobility. Sci Rep 3:1376CrossRefGoogle Scholar
  63. 63.
    Montoliu R, Blom J, Gatica-Perez D (2013) Discovering places of interest in everyday life from smartphone data. Multimed Tools Appl 62(1):179–207CrossRefGoogle Scholar
  64. 64.
    Nanni M, Pedreschi D (2006) Time-focused clustering of trajectories of moving objects. J Intell Inf Syst 27(3):267–289CrossRefGoogle Scholar
  65. 65.
    Oloritun RO, Ouarda TB, Moturu S, Madan A, Pentland AS, Khayal I (2013) Change in BMI accurately predicted by social exposure to acquaintances. PLoS ONE 8(11):79238CrossRefGoogle Scholar
  66. 66.
    Orlov YL, Filippov VP, Potapov VN, Kolchanov NA (2002) Construction of stochastic context trees for genetic texts. Silico Biol 2(3):233–247Google Scholar
  67. 67.
    Patterson DJ, Ding X, Kaufman SJ, Liu K, Zaldivar A (2009) An ecosystem for learning and using sensor-driven IM status messages. IEEE Pervasive Comput 8(4):42–49CrossRefGoogle Scholar
  68. 68.
    Pejovic V, Musolesi M (2015) Anticipatory mobile computing: a survey of the state of the art and research challenges. ACM Comput Surveys (CSUR) 47(3):47CrossRefGoogle Scholar
  69. 69.
    Pelekis N, Kopanakis I, Kotsifakos EE, Frentzos E, Theodoridis Y (2009) Clustering trajectories of moving objects in an uncertain world. In: Ninth IEEE international conference on data mining (ICDM09). IEEE, pp 417–427Google Scholar
  70. 70.
    Phithakkitnukoon S, Smoreda Z, Olivier P (2012) Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS ONE 7(6):39253CrossRefGoogle Scholar
  71. 71.
    Poushter J (2016) Smartphone ownership and internet usage continues to climb in emerging economies, Pew Research CenterGoogle Scholar
  72. 72.
    Qu M, Zhu H, Liu J, Liu G, Xiong H (2014) A cost-effective recommender system for taxi drivers. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 45–54Google Scholar
  73. 73.
    Reades J, Calabrese F, Sevtsuk A, Ratti C (2007) Cellular census: explorations in urban data collection. Pervasive Comput IEEE 6(3):30–38CrossRefGoogle Scholar
  74. 74.
    Reddy S, Mun M, Burke J, Estrin D, Hansen M, Srivastava M (2010) Using mobile phones to determine transportation modes. ACM Trans Sens Netw (TOSN) 6(2):13Google Scholar
  75. 75.
    Rösler R, Liebig T (2013) Using data from location based social networks for urban activity clustering. In: Vandenbroucke D, Bucher B, Crompvoets J (eds) Geographic information science at the heart of Europe. Lecture notes in geoinformation and cartography. Springer, BerlinGoogle Scholar
  76. 76.
    Sadilek A, Krumm J, Horvitz E (2013) Crowdphysics: planned and opportunistic crowdsourcing for physical tasks. In: Seventh international AAAI conference on weblogs and social mediaGoogle Scholar
  77. 77.
    Scellato S, Musolesi M, Mascolo C, Latora V, Campbell AT (2011) Nextplace: a spatio-temporal prediction framework for pervasive systems. In: International conference on pervasive computing. Springer, Berlin, pp 152–169Google Scholar
  78. 78.
    Shoval N et al (2008) The use of advanced tracking technologies for the analysis of mobility in Alzheimer’s disease and related cognitive diseases. BMC Geriatr 8(1):7CrossRefGoogle Scholar
  79. 79.
    Sohn T, Varshavsky A, LaMarca A, Chen MY, Choudhury T, Smith I, Consolvo S, Hightower J, Griswold WG, De Lara E (2006) Mobility detection using everyday GSM traces. In: UbiComp 2006: ubiquitous computing, LNCS 4206. Springer, pp 212–224Google Scholar
  80. 80.
    Song C, Qu Z, Blumm N, Barabási AL (2010) Limits of predictability in human mobility. Science 327(5968):1018–1021MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Song C, Koren T, Wang P, Barabási AL (2010) Modeling the scaling properties of human mobility. Nat Phys 6:818–823CrossRefGoogle Scholar
  82. 82.
    Song L, Kotz D, Jain R, He X (2006) Evaluating next-cell predictors with extensive Wi-Fi mobility data. IEEE Trans Mob Comput 5(12):1633–1649CrossRefGoogle Scholar
  83. 83.
    Song X, Shibasaki R, Yuan NJ, Xie X, Li T, Adachi R (2017) DeepMob: learning deep knowledge of human emergency behavior and mobility from big and heterogeneous data. ACM Trans Inf Syst (TOIS) 35(4):41CrossRefGoogle Scholar
  84. 84.
    Souto G, Liebig T (2016) On event detection from spatial time series for urban traffic applications. In: Michaelis S, Piatkowski N, Stolpe M (eds) Solving large scale learning tasks. Challenges and algorithms. Lecture notes in computer science, vol 9580. SpringerGoogle Scholar
  85. 85.
    Szalai A (1966) Trends in comparative time-budget research. Am Behav Sci 9(9):3–8CrossRefGoogle Scholar
  86. 86.
    Toch E, Cranshaw J, Drielsma PH, Tsai JY, Kelley PG, Springfield J, Cranor L, Hong J, Sadeh N (2010), Empirical models of privacy in location sharing. In: Proceedings of the 12th ACM international conference on ubiquitous computing, Ubicomp 10. ACM, New York, pp 129–138Google Scholar
  87. 87.
    Tong Y, Chen Y, Zhou Z, Chen L, Wang J, Yang, Q, Lv W (2017) The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1653–1662Google Scholar
  88. 88.
    Tsai JY, Kelley PG, Cranor LF, Sadeh N (2010) Location-sharing technologies: privacy risks and controls. I/S J Law Policy Inf Soc 6:119Google Scholar
  89. 89.
    Wang H, Fu Y, Wang Q, Yin H, Du C, Xiong H (2017) A location-sentiment-aware recommender system for both home-town and out-of-town users. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1135–1143Google Scholar
  90. 90.
    Wang J, Prabhala B (2012) Periodicity based next place prediction. In: Proceeding of the Nokia mobile data challenge workshopGoogle Scholar
  91. 91.
    Wang P, González MC, Hidalgo CA, Barabási A-L (2009) Understanding the spreading patterns of mobile phone viruses. Science 324(5930):1071–1076CrossRefGoogle Scholar
  92. 92.
    Wei LY, Zheng Y, Peng WC (2012) Constructing popular routes from uncertain trajectories. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 195–203Google Scholar
  93. 93.
    Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO (2012) Quantifying the impact of human mobility on malaria. Science 338(6104):267–270CrossRefGoogle Scholar
  94. 94.
    Xiao Y, Pan Y, Li J (2004) Design and analysis of location management for 3G cellular networks. IEEE Trans Parallel Distrib Syst 15(4):339–349CrossRefGoogle Scholar
  95. 95.
    Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: mobility data computation and annotation. ACM Trans Intell Syst Technol (TIST) 4(3):49Google Scholar
  96. 96.
    Ying JJ-C, Lee W-C, Tseng VS (2013) Mining geographic-temporal-semantic patterns in trajectories for location prediction. ACM Trans Intell Syst Technol (TIST) 5(1):2Google Scholar
  97. 97.
    Zaslavsky A, Chakraborty D et al. (2011) Recognizing concurrent and interleaved activities in social interactions. In: IEEE 9th international conference on dependable, autonomic and secure computing (DASC). IEEE, pp 230–237Google Scholar
  98. 98.
    Zhang C, Zhang K, Yuan Q, Zhang L, Hanratty T, Han J (2016) Gmove: group-level mobility modeling using geo-tagged social media. In: KDD: proceedings of international conference on knowledge discovery and data mining, vol 2016, p 1305Google Scholar
  99. 99.
    Zhang D, Zhang D, Xiong H, Yang LT, Gauthier V (2015) NextCell: predicting location using social interplay from cell phone traces. IEEE Trans Comput 64(2):452–463MathSciNetCrossRefMATHGoogle Scholar
  100. 100.
    Zhang JD, Chow CY (2013) iGSLR: personalized geo-social location recommendation: a kernel density estimation approach. In: Proceedings of the 21st ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 334–343Google Scholar
  101. 101.
    Zheng VW, Zheng Y, Xie X, Yang Q (2010) Collaborative location and activity recommendations with GPS history data. In: Proceedings of the 19th international conference on world wide web. ACM, pp 1029–1038Google Scholar
  102. 102.
    Zheng Y, Capra L, Wolfson O, Yang H (2014) Urban computing: concepts, methodologies, and applications. ACM Trans Intell Syst Technol (TIST) 5(3):38Google Scholar
  103. 103.
    Zheng D, Hu T, You Q, Kautz H, Luo J (2014) Inferring home location from user’s photo collections based on visual content and mobility patterns. In: Proceedings of the 3rd ACM multimedia workshop on geotagging and its applications in multimedia, pp 21–26Google Scholar
  104. 104.
    Zhu Y, Zhong E, Lu Z, Yang Q (2012) Feature engineering for place category classification. In: Mobile data challenge by Nokia workshop, in conjunction with international conference on pervasive computingGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Industrial Engineering and ManagementBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations