Skip to main content
Log in

Feature weighted confidence to incorporate prior knowledge into support vector machines for classification

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

This paper proposes an approach called feature weighted confidence with support vector machine (FWC–SVM) to incorporate prior knowledge into SVM with sample confidence. First, we use prior features to express prior knowledge. Second, FWC–SVM is biased to assign larger weights for prior weights in the slope vector \(\omega \) than weights corresponding to non-prior features. Third, FWC–SVM employs an adaptive paradigm to update sample confidence and feature weights iteratively. We conduct extensive experiments to compare FWC–SVM with the state-of-the-art methods including standard SVM, WSVM, and WMSVM on an English dataset as Reuters-21578 text collection and a Chinese dataset as TanCorpV1.0 text collection. Experimental results demonstrate that in case of non-noisy data, FWC–SVM outperforms other methods when the retaining level is not larger than 0.8. In case of noisy data, FWC–SVM can produce better performance than WSVM on Reuters-21578 dataset when the retaining level is larger than 0.4 and on TanCorpV1.0 dataset when the retaining level is larger than 0.5. We also discuss the strength and weakness of the proposed FWC–SVM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vapnik V (1982) Estimation of dependences based on empirical data. Springer, Berlin

    MATH  Google Scholar 

  2. Li J, Cao Y, Wang Y et al (2016) Online learning algorithms for double-weighted least squares twin bounded support vector machines. Neural Process Lett 45(1):1–21

    Google Scholar 

  3. Tomar D, Agarwal S (2015) Hybrid feature selection based weighted least squares twin support vector machine approach for diagnosing breast cancer, hepatitis, and diabetes. Adv Artif Neural Syst 2015. https://doi.org/10.1155/2015/265637

  4. Liu Y, Bi J, Fan Z (2017) A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Inf Sci 394:38–52

    Article  Google Scholar 

  5. Zhu F, Yang J, Gao C et al (2016) A weighted one-class support vector machine. Neurocomputing 189:1–10

    Article  Google Scholar 

  6. Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Krupka E, Tishby N (2007) Incorporating prior knowledge on features into learning. In: Proceedings of the eleventh international conference on artificial intelligence and statistics

  9. Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429–450

    Article  MATH  Google Scholar 

  10. Kunapuli G, Bennett KP, Shabbeer A et al (2010) Online knowledge-based support vector machines. In: Proceedings of European conference on machine learning and knowledge discovery in databases, pp 145–161

  11. Iwata T, Tanaka T, Yamada T et al (2011) Improving classifier performance using data with different taxonomies. IEEE Trans Knowl Data Eng 23(11):1668–1677

    Article  Google Scholar 

  12. Zhang L, Zhou W (2011) Density-induced margin support vector machines. Pattern Recognit 44(7):1448–1460

    Article  MATH  Google Scholar 

  13. Orchel M (2011) Incorporating priori knowledge from detractor points into support vector classification. In: Adaptive and natural computing algorithms (LNCS 6594), pp 332–341

  14. Lauer F, Bloch G (2008) Incorporating prior knowledge in support vector machines for classification: a review. Neurocomputing 71(7):1578–1594

    Article  Google Scholar 

  15. Niyogi P, Girosi F, Poggio T (1998) Incorporating prior information in machine learning by creating virtual examples. Proc IEEE 86(11):2196–2209

    Article  Google Scholar 

  16. Lin G, Wang S (2002) Fuzzy support vector machines. IEEE Trans Neural Netw 13(2):464–471

    Article  Google Scholar 

  17. Krishnapuram R, Keller JM (1996) The possibilistic c-means algorithm: insights and recommendations. IEEE Trans Fuzzy Syst 4(3):385–393

    Article  Google Scholar 

  18. Wu X, Srihari R (2004) Incorporating prior knowledge with weighted margin support vector machines. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, pp 326–333

  19. Zhang W, Yoshida T, Tang X (2008) Text classification based on multi-word with support vector machine. Knowl Based Syst 21(8):879–886

    Article  Google Scholar 

  20. Chechik G, Heitz G, Elidan G et al (2008) Max-margin classification of data with absent features. J Mach Learn Res 9:1–21

    MATH  Google Scholar 

  21. Bordes A, Ertekin S, Weston J et al (2005) Fast kernel classifiers with online and active learning. J Mach Learn Res 6:1579–1619

    MathSciNet  MATH  Google Scholar 

  22. The Reuters-21578 data set of English text collection. http://www.research.att.com/~lewis

  23. The USPTO (United States Patent and Trademark Office) stopwords list. http://ftp.uspto.gov/patft/help/stopword.htm

  24. The QTag tool for English part-of-speech. http://www.english.bham.ac.uk/staff/oma-son/software/qtag.html

  25. The Porter stemming algorithm for English. http://tartarus.org/martin/PorterStemmer/

  26. Salton G, Yang CS (1973) On the specification of term values in automatic indexing. J Doc 29(4):351–372

    Article  Google Scholar 

  27. Zhang W, Yoshida T, Tang X et al (2011) A comparative study of TF*IDF, LSI and multi-words for text classification. Expert Syst Appl 38(3):2758–2765

    Article  Google Scholar 

  28. The TanCorpV1.0 corpus. http://www.searchforum.org.cn/tansongbo/corpus1.php

  29. ICTCLAS: a Chinese morphological analysis tool. http://nlp.org.cn/zhp/ICTCLAS/codes.html

  30. The Chinese stop word list. http://www.datatang.com/data/19300

  31. Zhang W, Yoshida T, Tang XJ (2009) Using ontology to improve precision of terminology extraction from documents. Expert Syst Appl 36(5):9333–9339

    Article  Google Scholar 

  32. The WordNet. http://wordnet.princeton.edu

  33. Yang YM, Liu X (1999) A re-examination of text categorization methods. In: Proceedings on the 22nd annual international ACM SIGIR conference on research and development in information retrieval, Berkeley, CA, pp 42–49

  34. The JOptimizer. http://www.joptimizer.com/

  35. Shao J (1993) Linear model selection by cross-validation. J Am Stat Assoc 88(422):486–494

    Article  MathSciNet  MATH  Google Scholar 

  36. Mann HB, Whitney R (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  MathSciNet  MATH  Google Scholar 

  37. Cauwenberghs G, Poggio T (2001) Incremental and decremental support vector machine learning. In: Advances in neural information processing systems 13 (NIPS 2000), pp 409–415

  38. Crammer K, Dekel O, Keshet J et al (2006) Online passive-aggressive algorithms. J Mach Learn Res 7:551–585

    MathSciNet  MATH  Google Scholar 

  39. Antoine B, Seyda E, Jason W et al (2005) Fast kernel classifiers with online and active learning. J Mach Learn Res 6:1579–1619

    MathSciNet  MATH  Google Scholar 

  40. Zhang W, Yoshida T, Tang X et al (2010) Text clustering using frequent itemsets. Knowl Based Syst 23(5):379–388

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by National Natural Science Foundation of China under Grant Nos. 61379046, 91318302, and 61432001 and the Innovation Fund Project of Xi’an Science and Technology Program (Special Series for Xi’an University No. 2016CXWL21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yu, L., Yoshida, T. et al. Feature weighted confidence to incorporate prior knowledge into support vector machines for classification. Knowl Inf Syst 58, 371–397 (2019). https://doi.org/10.1007/s10115-018-1165-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-018-1165-2

Keywords

Navigation