Unsupervised outlier detection for time series by entropy and dynamic time warping

Abstract

In the last decade, outlier detection for temporal data has received much attention from data mining and machine learning communities. While other works have addressed this problem by two-way approaches (similarity and clustering), we propose in this paper an embedded technique dealing with both methods simultaneously. We reformulate the task of outlier detection as a weighted clustering problem based on entropy and dynamic time warping for time series. The outliers are then detected by an optimization problem of a new proposed cost function adapted to this kind of data. Finally, we provide some experimental results for validating our proposal and comparing it with other methods of detection.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Aggarwal C (2013) Outlier analysis. Springer, Berlin

    Google Scholar 

  2. 2.

    Aggarwal C, Zhao Y, Yu P (2011) Outlier detection in graph streams. In: Proceedings of ICDE, pp 399–409

  3. 3.

    Aggarwal C, Subbian K (2012) Event detection in social streams. In: Proceedings of SDM, pp 624–635

  4. 4.

    Bahadori M, Kale D, Yingying F, Yan L (2015) Functional subspace clustering with application to time series. Proceedings of ICML, pp. 228–237

  5. 5.

    Basu S, Meckesheimer M (2007) Automatic outlier detection for time series: an application to sensor data. Knowl Inf Syst 11(2):137–154

    Article  Google Scholar 

  6. 6.

    Bevilacqua M, Tsaftaris S (2015) Dictionary-decomposition-based one-class svm for unsupervised detection of anomalous time series. In: Proceedings of 23rd European signal processing conference (EUSIPCO), pp 1776–1780

  7. 7.

    Budalakoti S, Srivastava A, Otey M (2009) Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety. IEEE Trans Syst Man Cybern Part C Appl 39(1):101–113

    Article  Google Scholar 

  8. 8.

    Chandola V, Mithal V, Kumar V (2008) Comparative evaluation of anomaly detection techniques for sequence data. In: Proceedings of ICDM, pp 743–748

  9. 9.

    Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The ucr time series classification archive. www.cs.ucr.edu/~eamonn/time_series_data/

  10. 10.

    Dasgupta D, Nino F (2000) A comparison of negative and positive selection algorithms in novel pattern detection. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp 125–130

  11. 11.

    Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Dit-Yan Y, Calvin C (2002) Parzen-window network intrusion detectors. In: Proceedings of ICPR, pp 385–388

  13. 13.

    Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, Berlin

    Google Scholar 

  15. 15.

    Fox A (1972) Outliers in time series. J R Stat Soc Ser B Methodol 34(3):350–363

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Gao B, Ma H, Yang Y (2002) Hmms (hidden markov models) based on anomaly intrusion detection method. In: Proceedings of Conference on machine learning and cybernetics, pp 381–385

  17. 17.

    Gao J, Liang F, Fan W, Wang C, Sun Y, Han J (2010) On community outliers and their efficient detection in information networks. In: Proceedings of KDD, pp 813–822

  18. 18.

    Goldstein M, Uchida S (2016) A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE 11(4):1–31

    Google Scholar 

  19. 19.

    Görnitz N, Braun L, Kloft M (2015) Hidden markov anomaly detection. In: Proceedings of ICML, pp 1833–1842

  20. 20.

    Green P, Kim J, Carmone F (1990) A preliminary study of optimal variable weighting in k-means clustering. J Classif 7(2):271–285

    Article  Google Scholar 

  21. 21.

    Gupta M, Gao J, Aggarwal C, Han J (2014) Outlier detection for temporal data: a survey. IEEE Trans Knowl Data Eng 26(9):2250–2267

    Article  MATH  Google Scholar 

  22. 22.

    Gupta M, Gao J, Sun Y, Han J (2012) Integrating community matching and outlier detection for mining evolutionary community outliers. In: Proceedings of KDD, pp 859–867

  23. 23.

    Gupta M, Gao J, Sun Y, Han J (2012) Community trend outlier detection using soft temporal pattern mining. In: Proceedings of ECML/PKDD, pp 692–708

  24. 24.

    Hautamaki T, Nykanen P, Frant P (2008) Time-series clustering by approximate prototypes. In: Proceedings of ICPR, pp 1–4

  25. 25.

    Hawkins D (1980) Identification of outliers. Chapman and Hall, London

    Google Scholar 

  26. 26.

    Huang J, Ng M, Rong H, Li Z (2005) Automated variable weighting in k-means type clustering. IEEE Trans Pattern Anal Mach Intell 27:657–668

    Article  Google Scholar 

  27. 27.

    Jing L, Ng M, Huang Z (2007) An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans Knowl Data Eng 19(8):1026–1041

    Article  Google Scholar 

  28. 28.

    Kassab R, Alexandre F (2009) Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data. Mach Learn 74(2):191–234

    Article  MATH  Google Scholar 

  29. 29.

    Keogh E, Lin J, Lee S, Herle V (2006) Finding the most unusual time series subsequence: algorithms and applications. Knowl Inf Syst 11(1):1–27

    Article  Google Scholar 

  30. 30.

    Lane T, Brodley C (1997) Sequence matching and learning in anomaly detection for computer security. AI Approaches to Fraud Detection and Risk Management. In: AAAI Workshop, pp 43–49

  31. 31.

    Lee Y, Yeh R, Wang F (2013) Anomaly detection via online oversampling principal component analysis. IEEE Trans Knowl Data Eng 25(7):1460–1470

    Article  Google Scholar 

  32. 32.

    Makarenkov V, Legendre P (2001) Optimal variable weighting for ultrametric and additive trees and k-means partitioning: methods and software. J Classif 18:245–271

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Markus M, Hans-Peter K, Raymond T, Jrg S (2000) LOF: identifying density-based local outliers. In: Proceedings of SIGMOD Conference, pp 93–104

  34. 34.

    Modha D, Spangler S (2003) Feature weighting in k-means clustering. Mach Learn 52:217–237

    Article  MATH  Google Scholar 

  35. 35.

    Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Proceedings of neural information processing systems (NIPS), pp 849–856. MIT Press

  36. 36.

    Palpanas T, Papadopoulos D, Kalogeraki V, Gunopulos D (2003) Distributed deviation detection in sensor networks. Proc SIGMOD Rec 32(4):77–82

    Article  Google Scholar 

  37. 37.

    Paulheim H, Meusel R (2015) A decomposition of the outlier detection problem into a set of supervised learning problems. Mach Learn 100(2–3):509–531

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Petitjean F, Forestier G, Webb G, Nicholson A, Chen Y, Keogh E (2014) Dynamic time warping averaging of time series allows faster and more accurate classification. Proc ICDM 2014(2014):470–479

    Google Scholar 

  39. 39.

    Portnoy L, Eskin E, Stolfo S (2001) Intrusion detection with unlabeled data using clustering. In: Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA), pp 5–8

  40. 40.

    Rakthanmanon T, Campana B, Mueen A, Batista G, Westover M, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of ACM SIGKDD, pp 262–270

  41. 41.

    Ratanamahatana C, Keogh E (2004) Making time-series classification more accurate using learned constraints. Proc SIAM 2004:11–22

    MathSciNet  Google Scholar 

  42. 42.

    Rebbapragada U, Protopapas P, Brodley C, Alcock C (2009) Finding anomalous periodic time series. Mach Learn 74(3):281–313

    Article  Google Scholar 

  43. 43.

    Salvador S, Chan P (2004) Fastdtw: Toward accurate dynamic time warping in linear time and space. In: Proceedings of KDD workshop on mining temporal and sequential data, pp 70–80

  44. 44.

    Salvador S, Chan P (2005) Learning states and rules for detecting anomalies in time series. Appl Intell 23(3):241–255

    Article  Google Scholar 

  45. 45.

    Salvador S, Chan P (2007) Toward accurate dynamic time warping in linear time and space. Intell Data Anal 11(5):561–580

    Google Scholar 

  46. 46.

    Schölkopf B, Williamson R, Smola A, Shawe-Taylor J, Platt J (1999) Support vector method for novelty detection. In: Proceedings of neural information processing systems (NIPS), pp 582–588

  47. 47.

    Shang H (2014) A survey of functional principal component analysis. Adv Stat Anal 98(2):121–142

    MathSciNet  Article  Google Scholar 

  48. 48.

    Tian S, Mu S, Yin C (2007) Sequence-similarity kernels for svms to detect anomalies in system calls. Neurocomputing 70(4–6):859–866

    Article  Google Scholar 

  49. 49.

    Vintsyuk T (1968) Speech discrimination by dynamic programming. Cybernetics 4(1):52–57

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for their very useful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seif-Eddine Benkabou.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benkabou, S., Benabdeslem, K. & Canitia, B. Unsupervised outlier detection for time series by entropy and dynamic time warping. Knowl Inf Syst 54, 463–486 (2018). https://doi.org/10.1007/s10115-017-1067-8

Download citation

Keywords

  • Anomaly detection
  • Time series
  • DTW
  • Weighted clustering