Advertisement

Knowledge and Information Systems

, Volume 55, Issue 1, pp 1–13 | Cite as

Exploiting reciprocity toward link prediction

  • Niladri SettEmail author
  • Devesh
  • Sanasam Ranbir Singh
  • Sukumar Nandi
Regular Paper
  • 312 Downloads

Abstract

This paper addresses link prediction problem in directed networks by exploiting reciprocative nature of human relationships. It first proposes a null model to present evidence that reciprocal links influence the process of “triad formation”. Motivated by this, reciprocal links are exploited to enhance link prediction performance in three ways: (a) a reciprocity-aware link weighting technique is proposed, and existing weighted link prediction methods are applied over the resultant weighted network; (b) new link prediction methods are proposed, which exploit reciprocity; and (c) existing and proposed methods are combined toward supervised prediction to enhance the prediction performance further. All experiments are carried out on two real directed network datasets.

Keywords

Link prediction Reciprocity Link strength 

References

  1. 1.
    Ahmed C, ElKorany A, Bahgat R (2016) A supervised learning approach to link prediction in twitter. Soc Netw Anal Min 6(1):1–11CrossRefGoogle Scholar
  2. 2.
    Aiello LM, Barrat A, Schifanella R, Cattuto C, Markines B, Menczer F (2012) Friendship prediction and homophily in social media. ACM Trans Web 6(2):9:1–9:33CrossRefGoogle Scholar
  3. 3.
    Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1266–1275. ACMGoogle Scholar
  4. 4.
    Barzel B, Barabási A-L (2013) Network link prediction by global silencing of indirect correlations. Nat Biotechnol 31(8):720–725CrossRefGoogle Scholar
  5. 5.
    Benchettara N, Kanawati R, Rouveirol C (2010) Supervised machine learning applied to link prediction in bipartite social networks. In: 2010 international conference on advances in social networks analysis and mining (ASONAM), pp 326–330. IEEEGoogle Scholar
  6. 6.
    Clauset A, Moore C, Newman ME (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101CrossRefGoogle Scholar
  7. 7.
    De Sá HR, Prudêncio RB (2011) Supervised link prediction in weighted networks. In: Proceedings of the 2011 international joint conference on neural networks (IJCNN), pp 2281–2288. IEEEGoogle Scholar
  8. 8.
    Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380CrossRefGoogle Scholar
  9. 9.
    Gupta P, Goel A, Lin J, Sharma A, Wang D, Zadeh R (2013) Wtf: The who to follow service at twitter. In: Proceedings of the 22nd international conference on World Wide Web, pp 505–514. International World Wide Web Conferences Steering CommitteeGoogle Scholar
  10. 10.
    Hasan MA, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In: Proceedings of SDM 06 workshop on link analysis, Counterterrorism and SecurityGoogle Scholar
  11. 11.
    Huang Z, Li X, Chen H (2005) Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS joint conference on digital libraries, pp 141–142. ACMGoogle Scholar
  12. 12.
    Huang Z, Lin DKJ (2009) The time-series link prediction problem with applications in communication surveillance. INFORMS J Comput 21(2):286–303CrossRefGoogle Scholar
  13. 13.
    Krebs VE (2002) Mapping networks of terrorist cells. Connections 24(3):43–52Google Scholar
  14. 14.
    Kumar R, Novak J, Tomkins A (2010) Structure and evolution of online social networks. In: Yu PS, Han J, Faloutsos C (eds) Link mining: models, algorithms, and applications, pp 337–357. SpringerGoogle Scholar
  15. 15.
    Kunegis J, Lommatzsch A (2009) Learning spectral graph transformations for link prediction. In: ICML’09, pp 561–568. ACMGoogle Scholar
  16. 16.
    Lempel R, Moran S (2001) Salsa: the stochastic approach for link-structure analysis. ACM Trans Inf Syst (TOIS) 19(2):131–160CrossRefGoogle Scholar
  17. 17.
    Liben-Nowell D, Kleinberg J (2003) The link-prediction problem for social networks. In: CIKM’03, pp 556–559Google Scholar
  18. 18.
    Lichtenwalter RN (2012) Network analysis and link prediction: effective and meaningful modeling and evaluation. University of Notre Dame, Notre DameGoogle Scholar
  19. 19.
    Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: SIGKDD, pp 243–252. ACMGoogle Scholar
  20. 20.
    Lou T, Tang J, Hopcroft J, Fang Z, Ding X (2013) Learning to predict reciprocity and triadic closure in social networks. ACM Trans Knowl Discov Data (TKDD) 7(2):5Google Scholar
  21. 21.
    Lü L, Zhou T (2010) Link prediction in weighted networks: the role of weak ties. EPL (Europhys Lett) 89:18001CrossRefGoogle Scholar
  22. 22.
    Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Physica A Stat Mech Appl 390(6):1150–1170CrossRefGoogle Scholar
  23. 23.
    McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: Homophily in social networks. Annu Rev Sociol 27:415–444CrossRefGoogle Scholar
  24. 24.
    Murata T, Moriyasu S (2007) Link prediction of social networks based on weighted proximity measures. In: WI ’07, Washington, DC, USA. IEEE Computer Society pp 85–88Google Scholar
  25. 25.
    Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Newman ME, Forrest S, Balthrop J (2002) Email networks and the spread of computer viruses. Phys Rev E 66(3):035101CrossRefGoogle Scholar
  27. 27.
    Newman MEJ (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64:016132CrossRefGoogle Scholar
  28. 28.
    Romero DM, Kleinberg JM (2010) The directed closure process in hybrid social-information networks, with an analysis of link formation on twitter. In: ICWSMGoogle Scholar
  29. 29.
    Salton G (1989) Automatic text processing: the transformation, analysis, and retrieval of information by computer. Addison-Wesley Longman Publishing Co., Inc, BostonGoogle Scholar
  30. 30.
    Sett N, Singh SR, Nandi S (2016) Influence of edge weight on node proximity based link prediction methods: an empirical analysis. Neurocomputing 172:71–83CrossRefGoogle Scholar
  31. 31.
    Tylenda T, Angelova R, Bedathur S (2009) Towards time-aware link prediction in evolving social networks. In: Proceedings of the 3rd workshop on social network mining and analysis, p 9. ACMGoogle Scholar
  32. 32.
    Viswanath B, Mislove A, Cha M, Gummadi KP (2009) On the evolution of user interaction in facebook. In: WOSN ’09, New York, NY, USA. pp 37–42. ACMGoogle Scholar
  33. 33.
    Wang D, Pedreschi D, Song C, Giannotti F, Barabasi A-L (2011) Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1100–1108. ACMGoogle Scholar
  34. 34.
    Yang Y, Chawla NV, Sun Y, Han J (2012) Predicting links in multi-relational and heterogeneous networks. In ICDM 12: 755–764Google Scholar
  35. 35.
    Zhou T, Lü L, Zhang Y-C (2009) Predicting missing links via local information. Eur Phys J B Condens Matter Complex Syst 71(4):623–630CrossRefzbMATHGoogle Scholar
  36. 36.
    Zhu Y, Xu B, Shi X, Wang Y (2013) A survey of social-based routing in delay tolerant networks: positive and negative social effects. IEEE Commun Surv Tutor 15(1):387–401CrossRefGoogle Scholar
  37. 37.
    Zlatić V, Štefančić H (2011) Model of wikipedia growth based on information exchange via reciprocal arcs. EPL (Europhys Lett) 93(5):58005CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Niladri Sett
    • 1
    Email author
  • Devesh
    • 1
    • 2
  • Sanasam Ranbir Singh
    • 1
  • Sukumar Nandi
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Paytm, BPL Software CenterBengaluruIndia

Personalised recommendations