Arel I, Rose DC, Karnowski TP (2010) Deep machine learning—a new frontier in artificial intelligence research. IEEE Comput Intell Mag 5(4):13–18
Article
Google Scholar
Bailey M, Oberheide J, Andersen J, Mao Z, Ahanian F, Nazario J (2007) Automated classification and analysis of internet malware. In: 10th international symposium on research in attacks, intrusions and defenses (RAID) 2007, LNCS, pp 178–197
Bengio Y, LeCun Y (2007) Scaling learning algorithms towards AI. Large-Scale Kernel Mach 34(5):1–41
Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127
MathSciNet
Article
MATH
Google Scholar
Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks. In: Advances in neural information processing systems 19 (NIPS’06), pp 153–160
Carreira-Perpinan M, Hinton G (2005) On contrastive divergence learning. In: Proceedings of the tenth international workshop on artificial intelligence and statistics
Cesare S, Xiang Y, Zhou W (2014) Control flow-based malware variant detection. IEEE Trans Dependable Secure Comput 11(4):307–317
Article
Google Scholar
Collobert R, Weston J (2008) A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning (ICML’08), pp 160–167
Dunne RA (2007) A statistical approach to neural networks for pattern recognition, 1st edn. Wiley, New York
Book
MATH
Google Scholar
Egele M, Scholte T, Kirda E, Kruegel C (2008) A survey on automated dynamic malware analysis techniques and tools. In: ACM computing surveys (CSUR), vol 44(2), pp 6:1–6:42
Filiol E (2006) Malware pattern scanning schemes secure against blackbox analysis. J Comput Virol 2(1):35–50
Article
Google Scholar
Filiol E, Jacob G, Liard ML (2007) Evaluation methodology and theoretical model for antiviral behavioural detection strategies. J Comput Virol 3(1):27–37
Article
Google Scholar
Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507
MathSciNet
Article
MATH
Google Scholar
Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554
MathSciNet
Article
MATH
Google Scholar
Hinton GE (2012) A practical guide to training restricted Boltzmann machines. Neural Netw Tricks Trade 7700:599–619
Article
Google Scholar
Hinton GE, Dayan P, Frey BJ, Neal RM (1995) The wake-sleep algorithm for unsupervised neural networks. Science 268(5214):1158–1161
Article
Google Scholar
Hinton GE (2007) To recognize shapes, first learn to generate images. Prog Brain Res 165:535–547
Article
Google Scholar
Hou S, Chen L, Tas E, Demihovskiy I, Ye Y (2015) Cluster-oriented ensemble classifiers for malware detection. In: IEEE international conference on semantic computing (IEEE ICSC), pp 189–196
Huang W, Song G, Hong H, Xie K (2014) Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans Intell Transp Syst 15(5):2191–2201
Article
Google Scholar
Jung W, Kim S, Choi S (2015) Poster: deep learning for zero-day flash malware detection. In: 36th IEEE symposium on security and privacy
Kaspersky Lab (2015) The great bank robbery. http://www.kaspersky.com/about/news/virus/2015/Carbanak-cybergang-steals-1-bn-USD-from-100-financial-institutions-worldwide
Kavukcuoglu K, Sermanet P, Boureau Y, Gregor K, Mathieu M, LeCun Y (2010) Learning convolutional feature hierarchies for visual recognition. In: Advances in neural information processing systems (NIPS 2010), vol 23
Kephart J, Arnold W (1994) Automatic extraction of computer virus signatures. In: Proceedings of 4th virus bulletin international conference, pp 178–184
Kolter J, Maloof M (2004) Learning to detect malicious executables in the wild. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (ACM SIGKDD’04), pp 470–478
Kong D, Yan G (2013) Discriminant malware distance learning on structural information for automated malware classification. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1357–1365
Li Y, Ma R, Jiao R (2015) A hybrid malicious code detection method based on deep learning. Int J Secur Appl 9(5):205–216
Google Scholar
Lv Y, Duan Y, Kang W, Li Z, Wang F (2015) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst 16(2):865–873
Google Scholar
Masud MM, Al-Khateeb TM, Hamlen KW, Gao J, Khan L, Han J, Thuraisingham B (2008) Cloud-based malware detection for evolving data streams. In: ACM transactions on management information systems (TMIS), vol 2(3), pp 16:1–16:27
Menahem E, Shabtai A, Levhar A (2013) Detecting malware through temporal function-based features. In: Proceedings of the 2013 ACM SIGSAC conference on computer and communications security, pp 1379–1382
Ouellette J, Pfeffer A, Lakhotia A (2013) Countering malware evolution using cloud-based learning. In: 8th international conference on malicious and unwanted software (MALWARE), pp 85–94
Park Y, Zhang Q, Reeves D, Mulukutla V (2010) AntiBot: clustering common semantic patterns for bot detection. In: IEEE 34th annual computer software and applications conference, pp 262–272
Schultz M, Eskin E, Zadok E (2001) Data mining methods for detection of new malicious executables. In: Proccedings of IEEE symposium on security and privacy
Shah S, Jani H, Shetty S, Bhowmick K (2013) Virus detection using artificial neural networks. Int J Comput Appl 84(5):3–21
Sung A, Xu J, Chavez P, Mukkamala S (2005) Static analyzer of vicious executables (save). In: Proceedings of the 20th annual computer security applications conference (ACSAC), pp 326–334
Symantec (2016) Internet security threat report. https://www.symantec.com/secu-rity-center/threat-report
Teh YW, Hinton GE (2001) Rate-coded restricted Boltzmann machines for face recognition. In: Proceedings of advances in neural information processing systems, pp 908–914
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408
MathSciNet
MATH
Google Scholar
Wang J, Deng P, Fan Y, Jaw L, Liu Y (2003) Virus detection using data mining techniques. In: Proccedings of IEEE 37th annual 2003 international Carnahan conference security technology
Wueest C (2016) Symantec security response: financial threats 2015. http://www.syman-tec.com/content/en/us/enterprise/media/security_response/whitepapers/financial-threats-2015.pdf
Ye Y, Wang D, Li T, Ye D, Jiang Q (2008) An intelligent PE-malware detection system based on association mining. J Comput Virol 4:323–334
Article
Google Scholar
Ye Y, Wang D, Li T, Ye D (2007) IMDS: intelligent malware detection system. In: Proceedings of the 13th ACM SIGKDD, pp 1043–1047
Ye Y, Li T, Zhu S, Zhuang W, Tas E, Gupta U, Abdulhayoglu M (2011) Combining file content and file relations for cloud based malware detection. In: Proceedings of ACM international conference on knowledge discovery and data mining (ACM SIGKDD), pp 222–230